



## A new solution to a standard problem: creating atmosphere-like isotope reference gases with precisely referenced $\delta^{13}\text{C}$ - $\text{CH}_4$

P. Sperlich (0,1), M. Guillevic (0,1,2), C. Buizert (1), T. Jenk (1), H. Schaefer (3), and T. Blunier (1)

(0) Both authors contributed the same amounts, (1) Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark (sperlich@nbi.ku.dk), (2) Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France, (3) National Institute for Water and Atmospheric Research, Wellington, New Zealand

Studying the isotopic composition of  $\delta^{13}\text{C}$  from atmospheric  $\text{CH}_4$  is an important tool to understand the biogeochemical mechanisms that drive atmospheric  $\text{CH}_4$  concentrations. Analytical systems commonly measure isotope ratios of atmospheric  $\text{CH}_4$  according to the identical treatment principle for the highest accuracy possible. This requires an atmosphere-like isotope reference gas, which serves as an anchor point to the VPDB isotope scale. The  $\delta^{13}\text{C}$  -  $\text{CH}_4$  of the applied isotope reference gas should be known as precisely and accurately as possible. Despite of its crucial importance for analyzing isotopes of atmospheric  $\text{CH}_4$ , international standards for  $\text{CH}_4$  isotopes are not available. Also, a standardized procedure on how to reference  $\text{CH}_4$  isotopes is not yet defined, as it is done for other gases by the World Meteorological Organization.

We present a method to overcome this referencing problem for  $\delta^{13}\text{C}$  -  $\text{CH}_4$  measurements. First, we quantitatively combust pure  $\text{CH}_4$  and measure the  $\delta^{13}\text{C}$  isotope ratios of the produced  $\text{CO}_2$ . Two pure  $\text{CH}_4$  gases from fossil and biogenic sources are analyzed to  $-39.56\text{ ‰}$  and  $-56.42\text{ ‰}$  for  $\delta^{13}\text{C}$ . From these two parental  $\text{CH}_4$  gases we mix two filial  $\text{CH}_4$  gases with  $\delta^{13}\text{C}$  of  $-42.21\text{ ‰}$  and  $-47.25\text{ ‰}$  similar to glacial and present atmospheric values, respectively. Next, we mix aliquots of these filial  $\text{CH}_4$  gases with ultrapure  $\text{N}_2/\text{O}_2$  ( $\text{CH}_4 \leq 2\text{ ppbv}$ ) and produce two synthetic isotope reference gases with  $\text{CH}_4$  mixing ratios near atmospheric values. We measure the synthetic isotope reference gases for  $\delta^{13}\text{C}$  -  $\text{CH}_4$  on another setup, which is currently being developed for measurements of  $\delta^{13}\text{C}$  -  $\text{CH}_4$  in atmospheric and ice core samples and verify the isotope values of  $\delta^{13}\text{C}$  -  $\text{CH}_4$ . Our method is suitable to produce large quantities of synthetic isotope reference gases with precisely referenced  $\delta^{13}\text{C}$  -  $\text{CH}_4$  isotope ratios. The  $\delta^{13}\text{C}$  -  $\text{CH}_4$  of the produced isotope reference gases can be adjusted to any desired composition between those of the parental  $\text{CH}_4$  gases.