

Estimating Best Achievable Performance Using an Information Theoretic Approach

W. Gong (1), H.V. Gupta (2), and D.W. Yang (1)

(1) 1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China. (gongw03@gmail.com),
(2) The University of Arizona, Tucson, Arizona, USA (hoshin.gupta@hwr.arizona.edu)

[Abstract]:

This study discusses hydrologic model uncertainty from a different aspect. Other than the well-known and intensively studied Bayesian based inverse problem solvers, we focus on an alternative methodology based on information theory to estimate the best achievable performance of a model with given data. As a model structure independent approach, it can offer a benchmark of model structure adequacy. In particular, we (a) discuss how to compute the information content of multivariate hydrological dataset; (b) estimate best achievable model performance with mutual information given by data; (c) define two kinds of uncertainty: Epistemic Uncertainty that can potentially be reduced by improving model structure, Aleatory Uncertainty that can't be identified by a deterministic model (and may be resolvable only up to its density by ensemble models); (d) with an ideal numerical experiment, we identify that the uncertainty of rainfall-runoff processes is not only caused by observation error but by the propagation of rainfall error in the model. On building two conceptual models, HyMod and SAC-SMA, on Leaf River and Chunky River, our analysis shows that the aleatory uncertainty is relatively small comparing to epistemic uncertainty. Though SAC-SMA is better than HyMod, both of them have a considerable room of improvement. Restraining error propagation by data assimilation may be the most preferred way to reduce epistemic uncertainty.

[Keywords]: Information Theory, Model Structure Adequacy, Mutual Information, Data Assimilation.