

Design of a two-well field test to determine in-situ residual and dissolution trapping of CO₂ in a deep saline aquifer

F. Fagerlund (1), A. Niemi (1), J. Bensabat (2), and V. Shtivelman (3)

(1) Uppsala University, Earth Sciences, Uppsala, Sweden (fritjof.fagerlund@geo.uu.se), (2) Environmental & Water Resources Engineering Ltd, Haifa, Israel (jbensabat@ewre.com), (3) Geophysical Institute of Israel, Lod, Israel (vladi@gii.co.il)

CO₂ trapping as immobile residual phase and by dissolution to brine are critical processes for CO₂ storage security and reservoir capacity in many geological settings in consideration for geological CO₂ storage. While laboratory and numerical modelling studies have provided valuable information on the topic, further field testing is critical to improve understanding of how the CO₂ trapping will take place in-situ and to assess the relative importance of the different trapping mechanisms at field sites for geological storage. Given the challenge to measure fluid flow and trapping processes in kilometre-deep reservoirs with few boreholes and limited knowledge of the spatial distribution of geological parameters, the design of field tests that can accurately quantify the CO₂ trapping is also challenging. Using modelling applied to the EU MUSTANG project's field testing site at Heletz, Israel, this study investigates how a two-well dipole test configuration can be used to study migration and trapping of CO₂ in-situ under influence of geological heterogeneity between two boreholes. A two-well dipole test sequence for quantifying both residual and dissolution trapping of CO₂ in situ is presented. The test uses a relatively small amount of injected CO₂ which is monitored by a combination of hydraulic, thermal and tracer measurement techniques. Hydraulic and thermal tests are shown to be sensitive to CO₂ saturation and residual trapping. Furthermore we present a novel tracer technique, employing a non-water-soluble tracer in the CO₂ phase, which is used to quantify the effective in-situ dissolution rate. Our modelling results show that the combination of these measurements in the two-well dipole configuration together with a mass balance of injected and abstracted fluids constitute an effective tool for characterization of in-situ trapping of geologically stored CO₂ at the field scale.