

In situ evaluation of air-sea CO₂ gas transfer velocity in an inner estuary using eddy covariance - with a special focus on the importance of using reliable CO₂-fluxes

E.T. Jørgensen (1), L.L. Sørensen (2), B. Jensen (2), and M.K. Sejr (1)

(1) Department of Bioscience, Aarhus University, Aarhus, etj@dmu.dk, (2) Department of Environmental Science, Aarhus University, Roskilde

The air-sea exchange of CO₂ or CO₂ flux is driven by the difference in the partial pressure of CO₂ in the water and the atmosphere ($\Delta p\text{CO}_2$), the solubility of CO₂ (K₀) and the gas transfer velocity (k) (Wanninkhof et al., 2009; Weiss, 1974).

$\Delta p\text{CO}_2$ and K₀ are determined with relatively high precision and it is estimated that the biggest uncertainty when modelling the air-sea flux is the parameterization of k. As an example; the estimated global air-sea flux increases by 70 % when using the parameterization by Wanninkhof and McGillis (1999) instead of Wanninkhof (1992) (Rutgersson et al., 2008). In coastal areas the uncertainty is even higher and only few studies have focused on determining transfer velocity for the coastal waters and even fewer on estuaries (Borges et al., 2004; Rutgersson et al., 2008).

The transfer velocity (k₆₀₀) of CO₂ in the inner estuary of Roskilde Fjord, Denmark was investigated using eddy covariance CO₂ fluxes (ECM) and directly measured $\Delta p\text{CO}_2$ during May and June 2010. The data was strictly sorted to heighten the certainty of the results and the outcome was; DS1; using only ECM, and DS2; including the inertial dissipation method (IDM).

The inner part of Roskilde Fjord showed to be a very biological active CO₂ sink and preliminary results showed that the average k₆₀₀ was more than 10 times higher than transfer velocities from similar studies of other coastal areas. The much higher transfer velocities were estimated to be caused by the greater fetch and shallower water in Roskilde Fjord, which indicated that turbulence in both air and water influence k₆₀₀.

The wind speed parameterization of k₆₀₀ using DS1 showed some scatter but when including IDM the r² of DS2 reached 0.93 with an exponential parameterization, where U₁₀ was based on the Businger-Dyer relationships using friction velocity and atmospheric stability. This indicates that some of the uncertainties coupled with CO₂ fluxes calculated by the ECM are removed when including the IDM.

References

Borges, A. V., B. Delille, L. S. Schiettecatte, F. Gazeau, G. Abril and M. Frankignoulle, Gas transfer velocities of CO₂ in three European estuaries (Randers Fjord, Scheldt, and Thames), *Limnology and Oceanography*, 49(5), 1630-1641, 2004.

Rutgersson, A., M. Norman, B. Schneider, H. Pettersson and E. Sahlee, The annual cycle of carbon dioxide and parameters influencing the air-sea carbon exchange in the Baltic Proper, *Journal of Marine Systems*, 74(1-2), 381-394, 2008.

Wanninkhof, R., W. E. Asher, D. T. Ho, C. Sweeney and W. R. McGillis, Advances in Quantifying Air-Sea Gas Exchange and Environmental Forcing, *Annual Review of Marine Science*, 1, 213-244, 2009.

Weiss, R. F., Carbon Dioxide in water and seawater: the solubility of a non-ideal gas, *Marine Chemistry*, 2(3), 203-215, 1974.