Geophysical Research Abstracts Vol. 14, EGU2012-7711, 2012 EGU General Assembly 2012 © Author(s) 2012

CO₂ speciation and transport properties of CO₂-bearing silicate melts.

R. Vuilleumier (1), N. Sator (2), A. Seitsonen (3), and B. Guillot (2)

(1) Laboratoire PASTEUR, UMR 8640 CNRS-ENS-UPMC Paris 6, Département de Chimie, Ecole Normale Supérieure, Paris 75005, France, (2) Laboratoire de Physique Théorique de la Matière condensée (UMR 7600), Université Pierre et Marie Curie (Paris 6), 4 place Jussieu, 75252 Paris cedex France, (3) Physikalisch Chemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

There are growing evidences of the existence of CO_2 -rich magmas in the upper mantle (e.g. Dasgupta and Hirschmann, 2006; Zeng et al., 2010; Helo et al., 2011). So the role of carbon-rich melts at depth is now becoming a credible scenario to explain the extraction of CO_2 from the source region to the surface. During the last three decades many studies have been devoted to measure the solubility of CO_2 in silicate melts of various composition. But due to experimental difficulties these studies were generally restricted to low and moderate pressures (below \sim 20 kbar). IR spectroscopy has emphasized the importance of CO_2 speciation which may exist either as molecular CO_2 or as carbonate ion (CO_3^{2-}), the molecular form being favored in polymerized (silicic) melts while the carbonate ion is dominant in depolymerized (basic and ultrabasic) melts. However it has been suggested recently (e.g. Morizet et al., 2007, Spickenbom et al., 2010) that the CO_2 speciation observed in quenched glasses by IR spectroscopy may not be representative of that in silicate melts equilibrated at high temperature: in particular, the abundance of molecular CO_2 could be underestimated in the liquid at magmatic temperatures

Recently, in introducing an empirical force field to describe the chemical reactivity of CO_2 in silicate liquids $(CO_2 + (O^{2-})_{melt} \leftrightarrow CO_3^{2-})$, it has been possible to evaluate by classical molecular dynamics (MD) calculation the solubility and speciation of CO_2 in silicate melts of various composition (Guillot and Sator, 2011). The conclusions of these MD calculations are twofold, (i) The solubility of CO_2 increases markedly with the pressure and reaches value as high as \sim 20 wt% in basaltic melts at 8 GPa, and (ii) The proportion of molecular CO_2 is found to be significant in CO_2 -saturated basic and ultrabasic melts at superliquidus temperature and high pressures, a result at variance with post mortem analysis of basaltic glasses where only carbonate ions are detected. So, to check the consistency of the above MD calculations we have performed *ab initio* molecular dynamics simulations (AIMD) of CO_2 -saturated basaltic and kimberlitic melts. The results of these electronic structure calculations are presented here. They support the aforementioned conclusions reached with classical MD calculations. The effect of CO_2 on viscosity and electrical conductivity of basaltic and kimberlitic melts has also been evaluated by the two methods (classical and *ab initio*). It will be discussed how our simulation data may help to better understand the migration and emplacement of CO_2 -rich magmas.

Dasgupta R. and Hirschmann M.M. (2007) Melting in the Earth's deep upper mantle caused by carbon dioxide. Nature 440, 659-662.

Guillot B. and Sator N. (2011). Carbon dioxide in silicate melts: A molecular dynamics simulation study, GCA 75, 1829-1857.

Helo et al. (2011) Explosive eruptions at mid-ocean ridges driven by CO₂-rich magmas. Nature Geoscience 4, 260-263.

Morizet et al. (2007) The influence of H2O and CO₂ on the glass transition temperature: insights into the effects of volatiles on magma viscosity. Eur. J. Mineral. 19, 657-669.

Spickenbom et al. (2010) Carbon dioxide and argon diffusion in silicate melts: insights into the CO_2 speciation in magmas; GCA 74, 6541-6564.

Zeng G. et al. (2010) Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China. Chem. Geol. 273, 35-45.