

A soil toposequence characterization on evaporites in the semiarid Central Ebro Basin (NE-Spain)

J. Martínez-Aznar (1), D. Badía-Villas (1), C. Martí-Dalmau (1), and F. J. León-Miranda (2)

(1) University of Zaragoza, Escuela Politécnica Superior, Huesca, Spain (javier.maznar@gmail.com), (2) University of Zaragoza, Departamento de Geografía Física y Ordenación del Territorio, Zaragoza, Spain

Central Ebro Basin is a semi-arid region where evapotranspiration exceeds considerably the precipitation, and where Miocene gypsum ($\text{CaSO}_4 \cdot 2\text{H}_2\text{O}$) is abundant as soil parent material (ITGE, 1995). These are favourable conditions to develop gypseous soils, which cover less than 1% of the Earth's land surface, being especially scarce in Europe (IUSS, 1998). In order to get a detailed soil description of soils distribution along the landscape, the morphological, physical and chemical properties of five selected soil profiles along a slope were determined. Soils were classified using the Soil Taxonomy System (STS) and the World Reference Base (WRB).

Geomorphic unit	Soil forming processes	Horizons and diagnostic properties	Soil Taxonomy System (SSS, 2006)	World Reference Base (IUSS, 2006)
Head slope	Erosion	Gypsiferous material Lithic contact	Lithic Torriorthent	Haplic Gypsiferous Leptosol
Shoulder slope	Gypsification	Hypergypsiferous Lithic contact	Lithic Haplogypsid	Hypergypsiferous Leptic Gypsisol
Back slope	Gypsification	Hypergypsiferous	Xeric Haplogypsid	Hypergypsiferous Humic Gypsisol
Foot slope	Gypsification	Gypsiferous	Xeric Haplogypsid	Haplic Humic Gypsisol
Toes slope	Gypsification Salinization	Gypsiferous & Salic Fluviic properties	Xeric Haplogypsid	Endosalic Skeletic Gypsisol

Table 1. Soil forming processes, horizons and diagnostic properties and classification of the soils studied by the WRB (IUSS, 2006) taxonomy system and Soil Taxonomy System (SSS, 2006).

The surface horizons on the top of the slope have the lowest soil organic matter and soil aggregate stability value, both directly and significantly related ($R: 0.89; P < 0.01$). These properties increase water runoff and erosion on higher parts of the slopes (León et al, 2011). Soil water holding capacity (SWHC) is lower on the head and shoulder slope than in the other places, which favour plant cover. Soils are moderately calcareous and strongly gypseous (up to 80%), especially on the upper horizons of the top of hillslope. In the stabilized soils of the back slope the gypsum is translocated to developed gypsic horizons with depth. There is a negative and significant ($R: -0.80; P < 0.01$) relation between gypsum and carbonates. Moreover, in the toes slope profile can be found buried and salic horizons. According to these properties, the soils mainly belong to Gypsisol group (Haplogypsid by Soil Taxonomy System) with differences at unit level related to its position along the slope (Table 1).

IUSS Working Group WRB, 1998. World reference base for soil resources: Introduction. J.A. Dekkers, F.O. Nachtergaele and O.C. Spaargaren (Eds). ISSS-ISRIC-FAO. Acco. Leuven, Belgium.

IUSS Working Group WRB. 2006. World reference base for soil resources 2006. World Soil Resource Reports, 103. Rome.

Instituto Tecnológico y Geominero de España (ITGE). 1995. Mapa Geológico de España. E: 1/50.000. Hoja: Remolinos. Madrid (Spain).

León, J., Echeverría, M., Badía, D., Martí, C., Álvarez C. 2011. Effectiveness of wood chips cover at reducing erosion in two contrasted burnt soils. Zeitschrift für Geomorphologie. (Submitted).

Soil Survey Staff 2006. Keys to Soil Taxonomy. United States Department of Agriculture. Washington D.C.