

Engineering challenges of ocean alkalinity enhancement

T. Kruger (1) and P. Renforth (2)

(1) Oxford Geoengineering Programme, Oxford Martin School, Old Indian Institute, University of Oxford, 34 Broad Street, Oxford, OX1 3BD (Tim.Kruger@earth.ox.ac.uk), (2) Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN (Phil.Renforth@earth.ox.ac.uk)

The addition of calcium oxide (CaO) to the ocean as a means of enhancing the capacity of the ocean as a carbon sink was first proposed by Haroon Kheshgi in 1995. Calcium oxide is created by heating high purity limestone in a kiln to temperatures of approximately 1000°C. Addition of this material to the ocean draws carbon dioxide out of the atmosphere (approximately 1 tonne of CaO could sequester 1.3 tonnes of CO₂). Abiotic carbonate precipitation is inhibited in the surface ocean. This is a carbon and energy expensive process, where approximately 0.8 tonnes of CO₂ are produced at a point source for every tonne sequestered. The feasibility of ocean alkalinity enhancement requires capture and storage of the point source of CO₂.

We present details of a feasibility study of the engineering challenges of Kheshgi's method focusing on the potential scalability and costs of the proposed process. To draw down a PgC per year would require the extraction and processing of ~6Pg of limestone per year, which is similar in scale to the current coal industry. Costs are estimated at ~USD30-40 per tonne of CO₂ sequestered through the process, which is favourable to comparative processes.

Kheshgi, H. (1995) Energy 20 (9) 915-922