

Estimates of boundary layer CO₂ by combining TCCON and TES data

L. Kuai (1), J. Worden (1), S. Kulawik (1), K. Bowman (1), C. Frankenberg (1), E. Olsen (1), D. Wunch (2), R. Shia (2), B. Connor (3), C. Miller (1), and Y. Yung (2)

(1) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, (2) California Institute of Technology, Pasadena, CA, USA, (3) BC Consulting Ltd., 6 Fairway Dr, Alexandra 9320, New Zealand

Monitoring the global distribution and long-term variations of CO₂ sources and sinks is required for characterizing the global carbon budget. Measurements of the total column CO₂ by ground or by satellite have the potential to estimate global sources and sinks (Rayner and O'Brien, GRL, 2001, Olsen and Randerson, JGR, 2004) but are less sensitive to regional scale sources and sinks because CO₂ is a long-lived gas which makes it challenging to identify local sources from CO₂ transported into the observed air parcel (Keppel-Aleks et al., BGD, 2011). In this study we explore the use of total column measurements with estimates of the free tropospheric CO₂ to distinguish planetary boundary layer (PBL) CO₂ and free tropospheric CO₂ because quantifying the vertical gradient between the free troposphere and boundary layer is critical for estimating CO₂ fluxes (Stephens, Science, 2007) and near surface CO₂ should be more sensitive to local fluxes than the total column CO₂.

Column-averaged concentrations are derived by integrating CO₂ profiles, which are retrieved from the Total Carbon Column Observing Network (TCCON) measurements. These column data agree with aircraft integrated column CO₂ within root mean square (RMS) of 0.7 ppm, consistent with the uncertainties due to measurement noise and temperature. There is a bias of about -5 ppm, agreeing with Wunch et al. (Atmos. Meas. Tech. 2010).

Free troposphere estimates of CO₂ are obtained from the GEOS-Chem model that has assimilated CO₂ measurements from Aura Tropospheric Emission Spectrometer (TES). The PBL CO₂ estimates are calculated by subtracting TES free tropospheric CO₂ from TCCON column CO₂. This estimate of PBL CO₂ agrees well with aircraft data with RMS of 1.30 ppm for more than forty PBL CO₂ estimates we compared. This work shows that total column from NIR measurements (GOSAT, TCCON and OCO-2) and free troposphere measurement from TIR (e.g. TES and AIRS) can be used to profile CO₂ and obtain PBL estimates with precision necessary to capture the atmospheric CO₂ variability. It also shows potential of joint retrieval of NIR and TIR. The CO₂ surface flux can be better quantified by monitoring a long-term boundary layer CO₂.