

An aeromagnetic double cover of Karasjok, Norway

M. Brönner, K. Fabian, A. Nasuti, and S. A. McEnroe

NGU, Geological Survey of Norway, Trondheim, Norway (karl.fabian@ngu.no)

Separating remanent from induced magnetic anomalies is a challenging but important task in the interpretation of aeromagnetic data. A comprehensive knowledge of petrophysical properties and geological processes is necessary to estimate the quantity and distribution of remanent rocks in an area to obtain a realistic model. A different and more efficient possibility to achieve this separation is to use repeated high-quality aeromagnetic measurements, performed within diverse geomagnetic fields. If the geomagnetic field substantially changed between two surveys, A and B , due to the regional geomagnetic secular variation, the difference between both survey anomalies mainly results from the magnetization induced by this secular variation $\Delta H = H_B - H_A$. In many places of the world the secular variation during the last 30 years has been more than 500 nT, giving a sufficiently high signal-to-noise ratio in the difference of two high-quality data sets. Here a double cover of a continental magnetic anomaly near Karasjok, northern Norway, is studied using two surveys of similar resolution made in 1982 and in 2011 covering a common area of 20 km \times 30 km. An evaluation of IGRF models confirms that the geomagnetic field intensity in this region has increased by approximately 500 nT. In the case of a purely induced magnetization, the anomaly amplitudes should have consistently increased by about 1% in response to the field increase. Deviations from this expected variation make it possible to identify remanent magnetic anomalies in crustal rocks, a topic of high relevance with respect to mineral exploration and lamellar magnetism.