

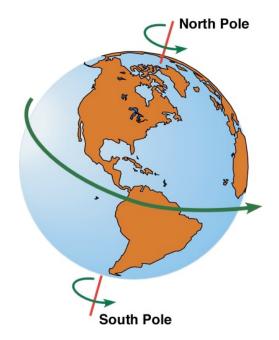
Assimilation of Earth Rotation Parameters into the Community Atmosphere Model

Lisa Neef^{1,3} & Katja Matthes^{1,2,3}

¹Helmholtz Zentrum Potsdam (GFZ)

²Free University of Berlin

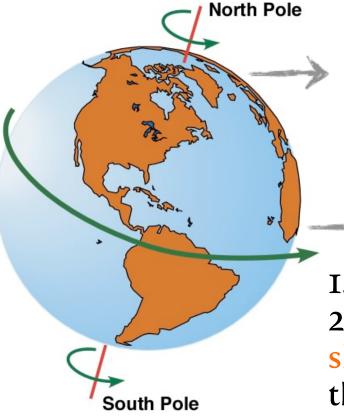
³Helmholtz Zentrum für Ozeanforschung Kiel (GEOMAR)



EGU General Assembly 2012 Session NP5.2, 26 April 2012

Motivation

Earth rotation varies in time.



Polar Motion Angles (PM1, PM2)

 These changes are observed.
 They reflect motion in the fluid shell around the Earth, primarily the atmosphere.
 Therefore, they offer a constraint upon atmosphere models.

$$p_{1} + \frac{\dot{p_{2}}}{\sigma_{0}} = \chi_{1} = -\frac{R^{3}}{g(C-A)} \left[\frac{1.16}{\Omega} \int \int \int (u \sin \phi \cos \phi \cos \lambda - v \cos \phi \sin \lambda) d\lambda d\phi dp + 1.10R \int \int p_{s} \sin \phi \cos^{2} \phi \cos \lambda d\lambda d\phi dp \right]$$

$$-p_{2} + \frac{\dot{p_{1}}}{\sigma_{0}} = \chi_{2} = -\frac{R^{3}}{g(C-A)} \left[\frac{1.61}{\Omega} \int \int \int (u \sin \phi \cos \phi \sin \lambda + v \cos \phi \cos \lambda) d\lambda d\phi dp + 1.10R \int \int p_{s} \sin \phi \cos^{2} \phi \sin \lambda d\lambda d\phi dp \right]$$

$$\frac{\Delta \text{LOD}}{\text{LOD}_{0}} = \chi_{3} = \frac{R^{3}}{C_{m}g} \left[\frac{0.997}{\Omega} \int \int \int u \cos^{2} \phi d\lambda d\phi dp + R \int \int p_{s} \cos^{3} \phi d\lambda d\phi dp \right]$$

Earth Rotation ~ Variations in Atmospheric Angular Variations Momentum

Barnes et al. (1983) Gross (2009)

=

$$p_{1} + \frac{\dot{p_{2}}}{\sigma_{0}} = \chi_{1} = -\frac{R^{3}}{g(C-A)} \left[\frac{1 \times 6}{\Omega} \int \int \int (u \sin \phi \cos \phi \cos \lambda - v \cos \phi \sin \lambda) d\lambda d\phi dp - 1.10R \int \int p_{s} \sin \phi \cos^{2} \phi \cos \lambda d\lambda d\phi dp \right]$$
$$-p_{2} + \frac{\dot{p_{1}}}{\sigma_{0}} = \chi_{2} = -\frac{R^{3}}{g(C-A)} \left[\frac{1.61}{\Omega} \int \int \int (u \sin \phi \cos \phi \sin \lambda + v \cos \phi \cos \lambda) d\lambda d\phi dp - 1.10R \int \int p_{s} \sin \phi \cos^{2} \phi \sin \lambda d\lambda d\phi dp \right]$$
$$\frac{\Delta \text{LOD}}{\text{LOD}_{0}} = \chi_{3} = \frac{R^{3}}{C_{m}g} \left[\frac{0.997}{\Omega} \int \int \int u \cos^{2} \phi d\lambda d\phi dp + R \int \int p_{s} \cos^{3} \phi d\lambda d\phi dp \right]$$

Earth Rotation ~ Variations in Atmospheric Angular Variations Momentum

Barnes et al. (1983) Gross (2009)

=

$$p_{1} + \frac{\dot{p}_{2}}{\sigma_{0}} = \chi_{1} = -\frac{R^{3}}{g(C-A)} \left[\frac{1 \times 6}{\Omega} \int \int \int (u \sin \phi \cos \phi \cos \lambda - v \cos \phi \sin \lambda) d\lambda d\phi dp - 1.10R \int \int p_{s} \sin \phi \cos^{2} \phi \cos \lambda d\lambda d\phi dp \right]$$

$$-p_{2} + \frac{\dot{p}_{1}}{\sigma_{0}} = \chi_{2} = -\frac{R^{3}}{g(C-A)} \left[\frac{1.61}{\Omega} \int \int \int (u \sin \phi \cos \phi \sin \lambda + v \cos \phi \cos \lambda) d\lambda d\phi dp - 1.10R \int \int p_{s} \sin \phi \cos^{2} \phi \sin \lambda d\lambda d\phi dp \right]$$

$$\frac{\Delta LOD}{LOD_{0}} = \chi_{3} = \frac{R^{3}}{C_{mg}} \left[\frac{0.997}{\Omega} \int \int \int u \cos^{2} \phi d\lambda d\phi dp + R \int \int p_{s} \cos^{3} \phi d\lambda d\phi dp \right]$$

Earth
Rotation
Variations in Atmospheric Angular
Momentum

Barnes et al. (1983) Gross (2009)

=

$$p_{1} + \frac{\dot{p}_{2}}{\sigma_{0}} = \chi_{1} = -\frac{R^{3}}{g(C-A)} \left[\frac{1 \chi_{6}}{\Omega} \int \int \int (u \sin \phi \cos \phi \cos \lambda - v \cos \phi \sin \lambda) d\lambda d\phi dp - 1.10R \int \int p_{s} \sin \phi \cos^{2} \phi \cos \lambda d\lambda d\phi dp \right]$$
$$-p_{2} + \frac{\dot{p}_{1}}{\sigma_{0}} = \chi_{2} = -\frac{R^{3}}{g(C-A)} \left[\frac{1.61}{\Omega} \int \int \int (u \sin \phi \cos \phi \sin \lambda + v \cos \phi \cos \lambda) d\lambda d\phi dp - 1.10R \int \int p_{s} \sin \phi \cos^{2} \phi \sin \lambda d\lambda d\phi dp \right]$$
$$\frac{\Delta \text{LOD}}{\text{LOD}_{0}} = \chi_{3} = \frac{R^{3}}{C_{mg}} \left[\frac{0.997}{\Omega} \int \int \int u \cos^{2} \phi d\lambda d\phi dp + R \int \int p_{s} \cos^{3} \phi d\lambda d\phi dp \right]$$
Earth

Rotation Variations

Variations in Atmospheric Angular Momentum

Motion terms (relative AM)

=

Barnes et al. (1983) Gross (2009)

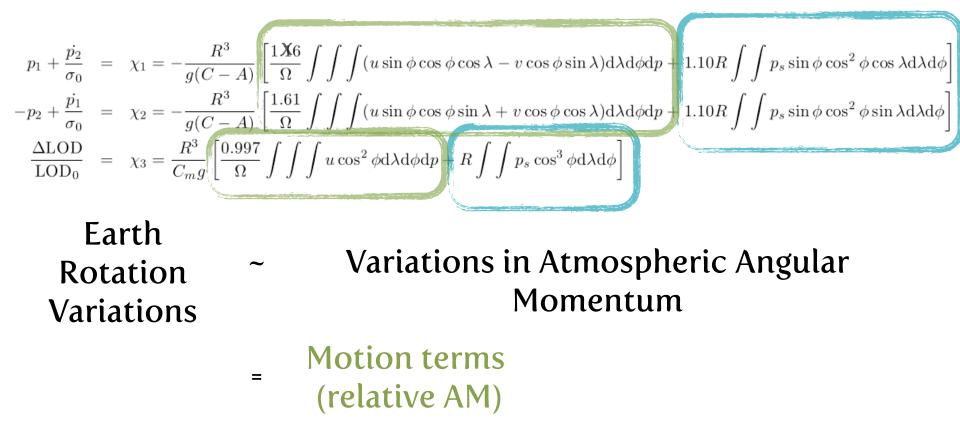
$$p_{1} + \frac{\dot{p}_{2}}{\sigma_{0}} = \chi_{1} = -\frac{R^{3}}{g(C-A)} \begin{bmatrix} \frac{1X6}{\Omega} \int \int \int (u\sin\phi\cos\phi\cos\lambda - v\cos\phi\sin\lambda)d\lambda d\phi dp - 1.10R \int \int p_{s}\sin\phi\cos^{2}\phi\cos\lambda d\lambda d\phi \end{bmatrix}$$
$$-p_{2} + \frac{\dot{p}_{1}}{\sigma_{0}} = \chi_{2} = -\frac{R^{3}}{g(C-A)} \begin{bmatrix} \frac{1.61}{\Omega} \int \int \int (u\sin\phi\cos\phi\sin\lambda + v\cos\phi\cos\lambda)d\lambda d\phi dp - 1.10R \int \int p_{s}\sin\phi\cos^{2}\phi\cos\lambda d\lambda d\phi \end{bmatrix}$$
$$\frac{\Delta \text{LOD}}{\text{LOD}_{0}} = \chi_{3} = \frac{R^{3}}{C_{mg}} \begin{bmatrix} \frac{0.997}{\Omega} \int \int \int u\cos^{2}\phi d\lambda d\phi dp + R \int \int p_{s}\cos^{3}\phi d\lambda d\phi \end{bmatrix}$$
Earth
Rotation ~ Variations in Atmospheric Angular

Momentum

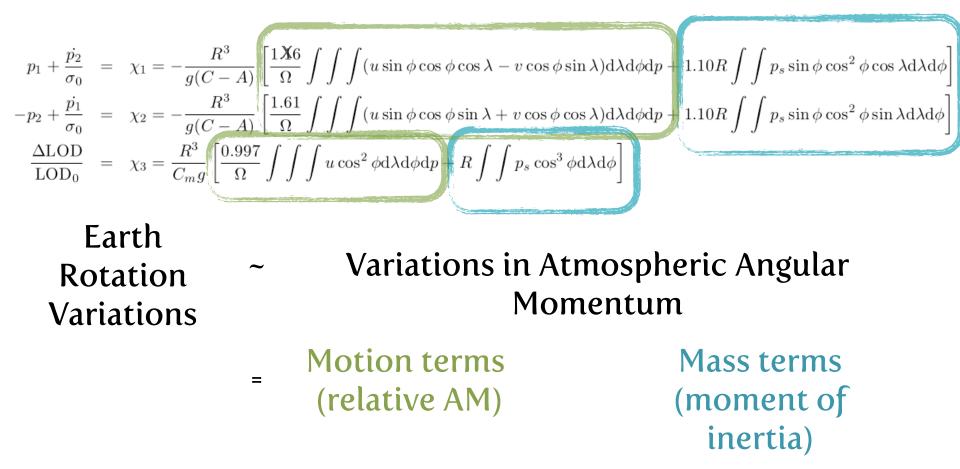
Motion terms (relative AM)

=

Barnes et al. (1983) Gross (2009)



Barnes et al. (1983) Gross (2009)

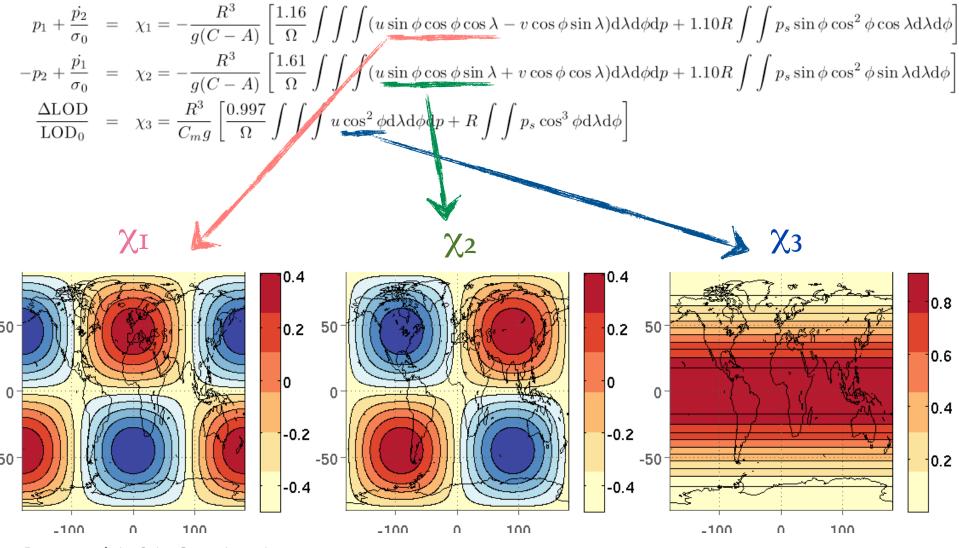


Barnes et al. (1983) Gross (2009)

$$p_{1} + \frac{\dot{p}_{2}}{\sigma_{0}} = \chi_{1} = -\frac{R^{3}}{g(C-A)} \begin{bmatrix} \frac{1\times6}{\Omega} \int \int (u\sin\phi\cos\phi\cos\lambda - v\cos\phi\sin\lambda)d\lambda d\phi dp - 1.10R \int \int p_{s}\sin\phi\cos^{2}\phi\cos\lambda d\lambda d\phi dp \\ -p_{2} + \frac{\dot{p}_{1}}{\sigma_{0}} = \chi_{2} = -\frac{R^{3}}{g(C-A)} \begin{bmatrix} \frac{1.61}{\Omega} \int \int (u\sin\phi\cos\phi\sin\lambda + v\cos\phi\cos\lambda)d\lambda d\phi dp \\ \frac{1.10R}{\Omega} \int p_{s}\sin\phi\cos^{2}\phi\sin\lambda d\lambda d\phi dp \\ \frac{\Delta LOD}{LOD_{0}} = \chi_{3} = \frac{R^{3}}{C_{m}g} \begin{bmatrix} \frac{0.997}{\Omega} \int \int \int u\cos^{2}\phi d\lambda d\phi dp \\ R \int \int p_{s}\cos^{3}\phi d\lambda d\phi dp \end{bmatrix}$$
Earth
Rotation
Variations
$$= \begin{array}{c} \text{Variations in Atmospheric Angular} \\ \text{Motion terms} \\ (relative AM) \end{array} + \begin{array}{c} \text{Mass terms} \\ \text{(moment of inertia)} \end{array}$$

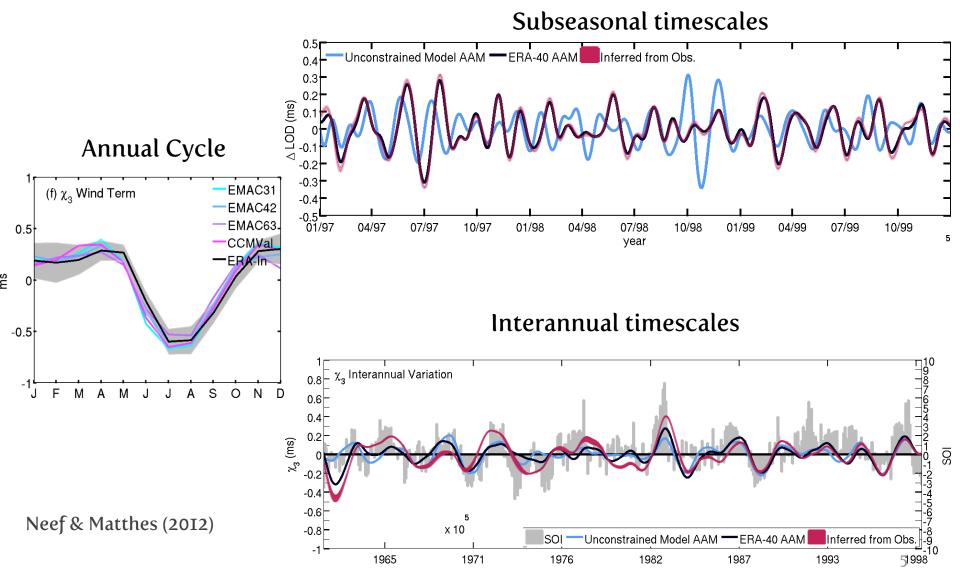
Barnes et al. (1983) Gross (2009)

Geographic Weighting Functions

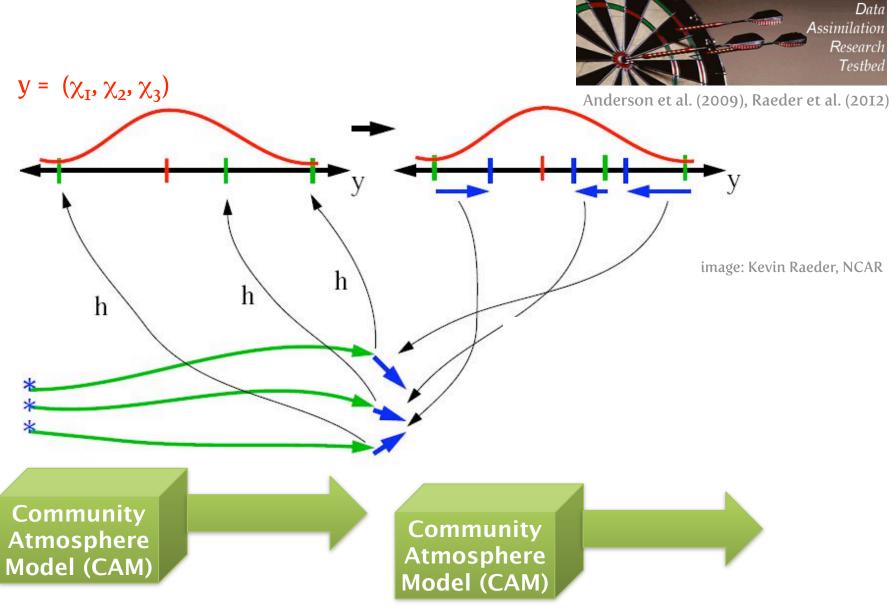


Barnes et al. (1983) Gross (2009)

Atmosphere Models Simulate Earth Rotation Excitation, but how depends on timescale.



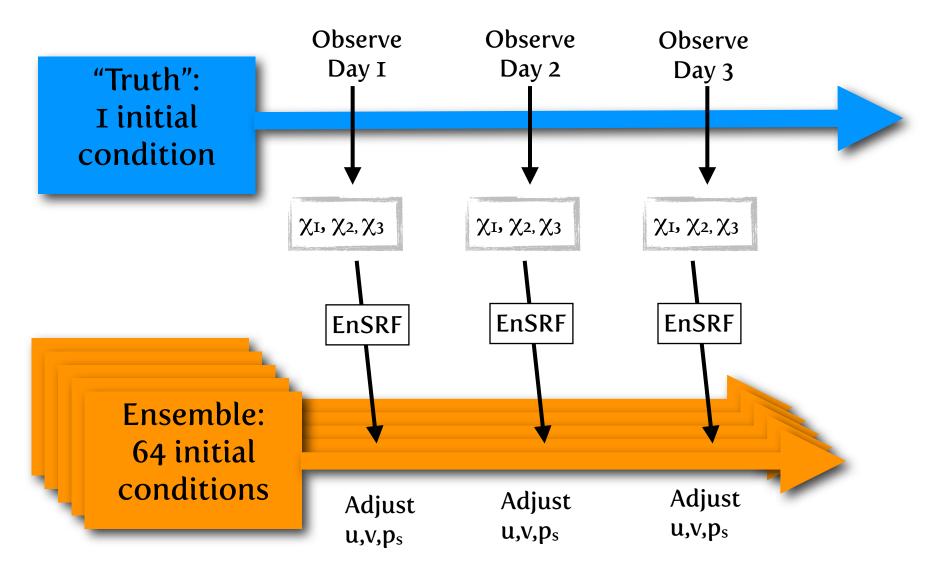
Assimilating ERPs Into an Atmosphere Model Using DART-CAM



Thursday, May 3, 2012

(cc)

Perfect-Model Experiments

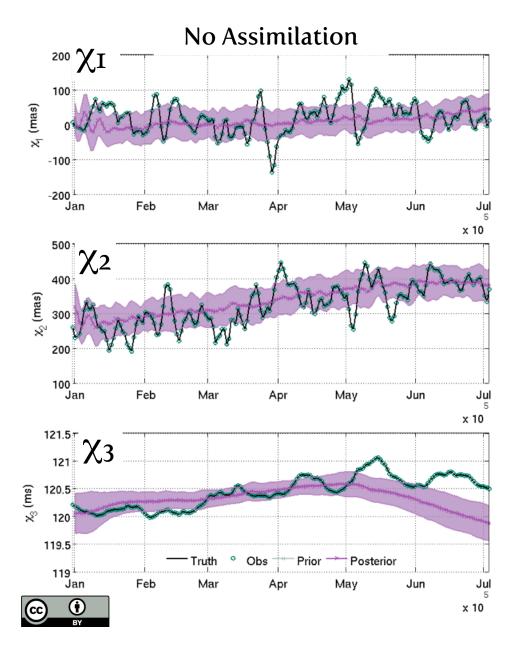


Given a perfect model and perfect observations, can we recover the truth?

Thursday, May 3, 2012

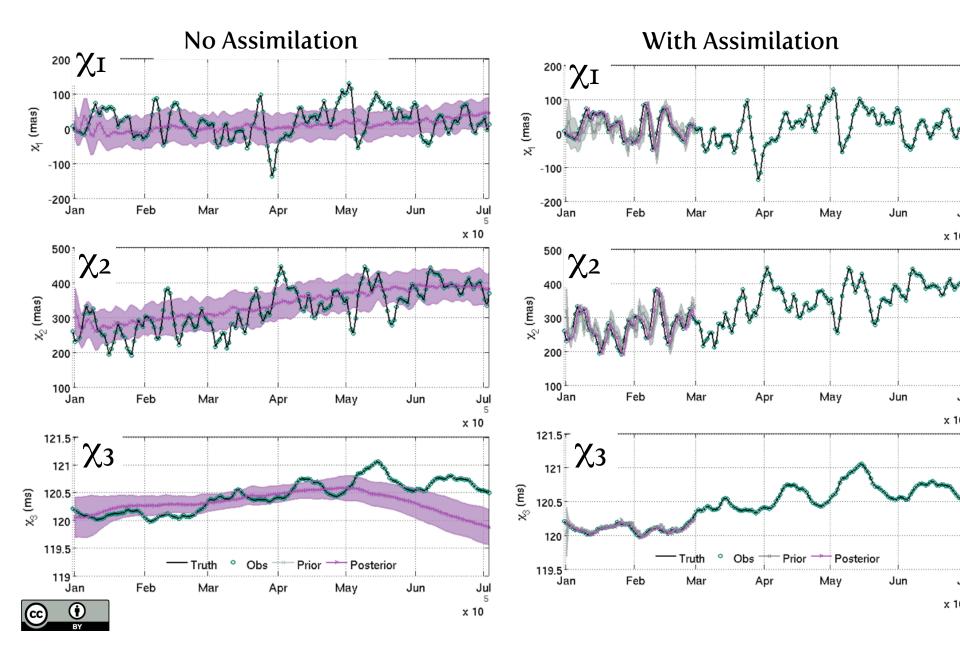
Observation Space

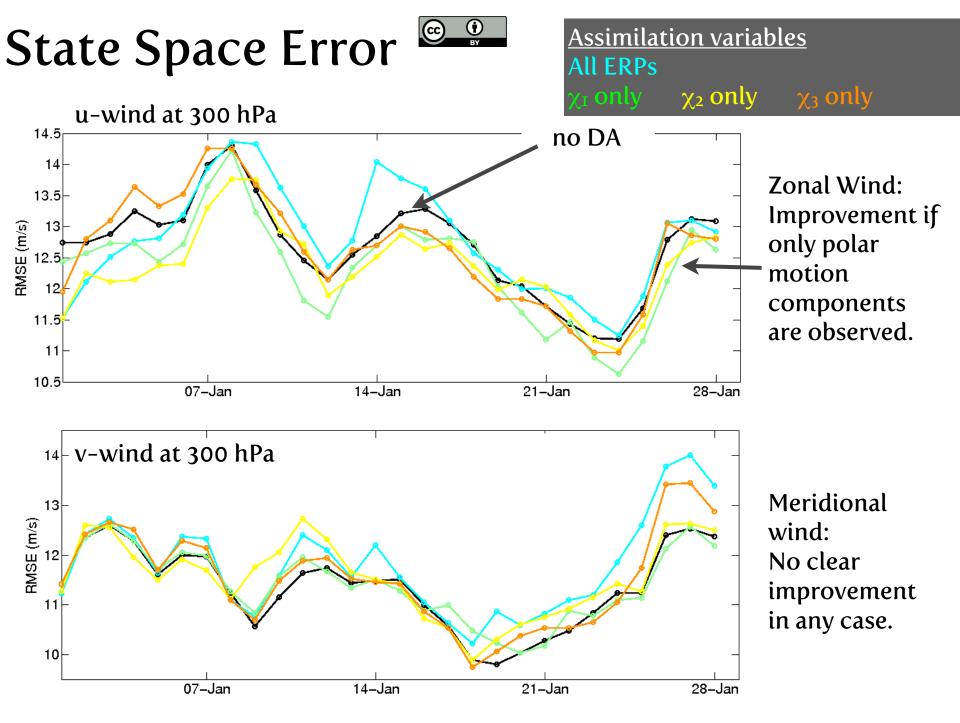
Truth Obs Prior Posterior



Observation Space

Truth Obs Prior Posterior

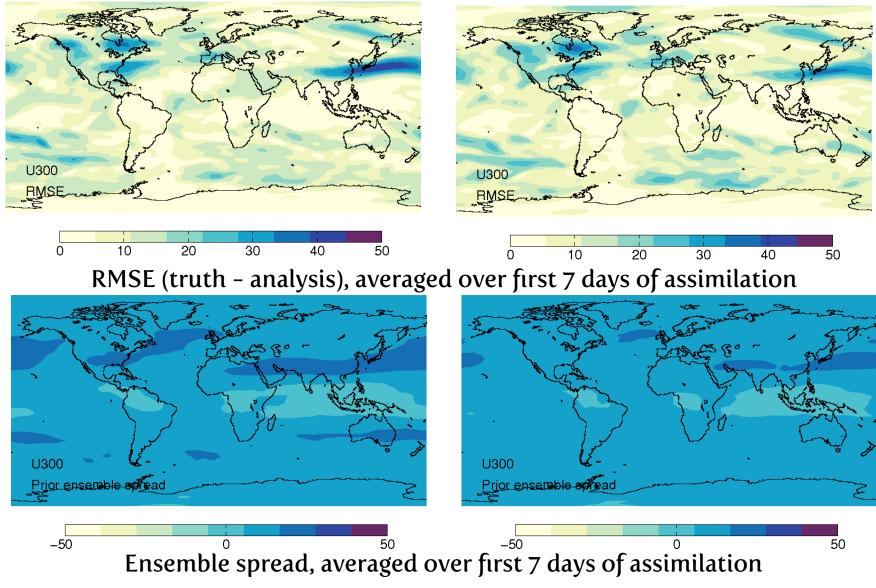




🐵 🎱 Regional Error vs. Ensemble Spread

u(300 hPa) – no assimilation

u(300 hPa) – with assimilation



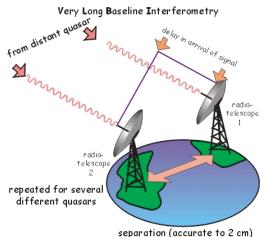
Summary and Conclusions

- Observed Earth Rotation Parameters (ERPs) translate into atmospheric excitation functions, which are an integral constraint on the state.
- Assimilation of ERPs constrains the zonal wind field.
- Excitation functions χ_I and χ_2 (polar motion) offer a stronger constraint than χ_3 (length-of-day) because they are weighted more heavily over midlatitudes.
- Ongoing work
 - Overall value of this constraint relative to localized observations
 - Effects of localizing the analysis increment to maxima in transfer functions

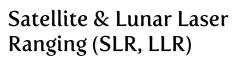
- Barnes, R., et al. (1983), Atmospheric angular momentum fluctuations, length-of-day changes and polar motion, Proc. Roy. Soc. London, 387, 31–73.
- Gross, R. S. (2009), Earth rotation variations long period, in Geodesy, Treatise on Geophysics, edited by T. Herring, pp. 239–294, Elsevier.
- Anderson, J., et al. (2009), The data assimilation research testbed: A community facility, Bull. Am. Met. Soc., pp. 1283–1296, doi: 10.1175/2009BAMS2816.1.
- Raeder, K. et al. (2012), An Ensemble Data Assimilation System for CESM Atmospheric Models. J. Clim. doi:10.1175/JCLI-D-11-00395.1, in press.
- Neef and Matthes (2012), Comparison of Earth rotation excitation in data-constrained and unconstrained atmosphere models, J. Geophys. Res., 117, D02(107), doi: 10.1029/2011JD016555.
- DART Website: <u>http://www.image.ucar.edu/DAReS/DART/</u>

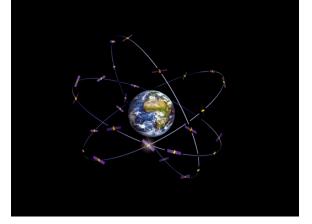
Extras

Earth Rotation Measurements



Very Long Baseline Interferometry (VLBI)



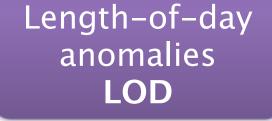


Global Positioning System (GPS)

Two angles of Polar Motion **p**₁, **p**₂

Berlin

Freie Universität

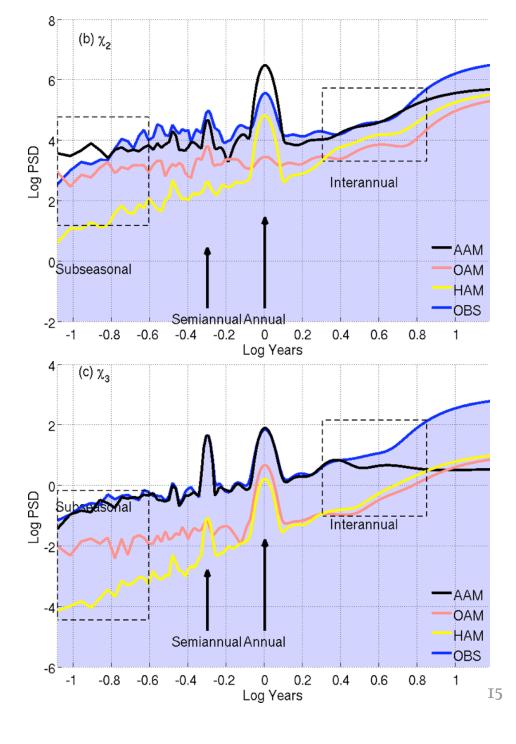


Thursday, May 3, 2012

GFZ

Helmholtz-Zentrum

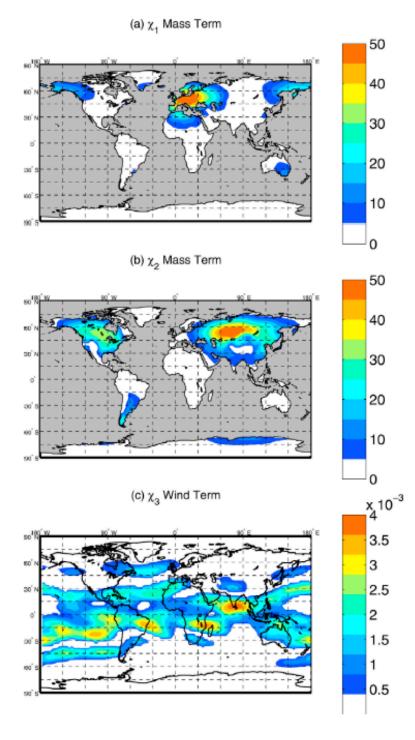
Role of the Atmosphere in Excitation of AAM



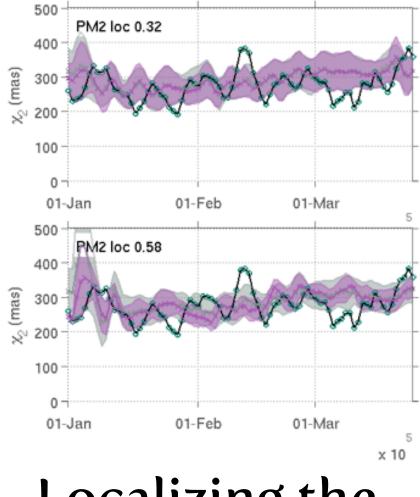
Localizing the Analysis Increment

Impact of assimilation is greatest where the initial ensemble variance is greatest ...compare to spatial correlation between excitation functions and local regions (I)

> Correlations between subseasonal variations in the three excitation functions and local contributions (Neef and Matthes, 2012)

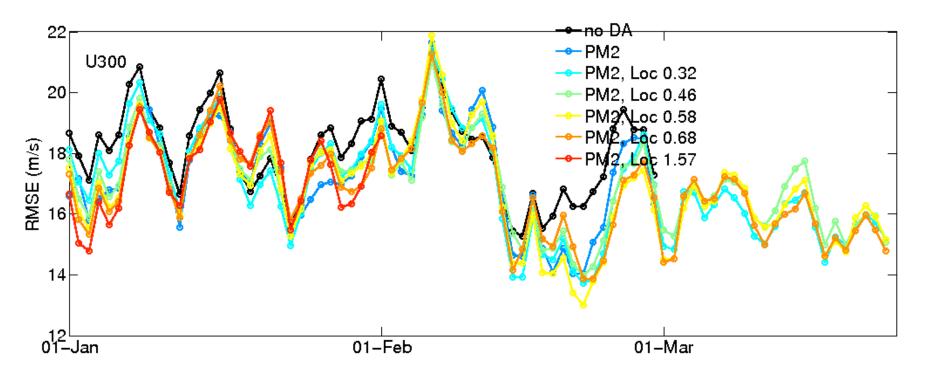






Localizing the Analysis Increment

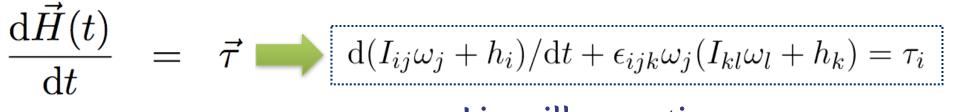
Localizing the Analysis Increment



Earth Angular Momentum

$$H_i(t) = I_{ij}(t)\omega_j(t) + h_j(t)$$

moment of inertia: Depends on distribution of mass around the Earth relative angular momentum: Movements relative to the the rotation vector ω



Liouville equation

If net external torques are zero, changes in relative AM and mass distribution are evened out by changes in the rotation vector.

Changes in Earth Angular Momentum

$$d(I_{ij}\omega_j + h_i)/dt + \epsilon_{ijk}\omega_j(I_{kl}\omega_l + h_k) = \tau_i$$

* Now assume very small perturbations in the MOI and relative AM (in each vector component!)

$$I_{ij}(t) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix} + \Delta I_{ij}(t) \qquad \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} = \begin{pmatrix} m_1 \\ m_2 \\ 1+m_3 \end{pmatrix} \Omega$$

$$\dot{m}_1/\sigma_c + m_2 = \chi_2 - \dot{\chi_1}/\Omega$$

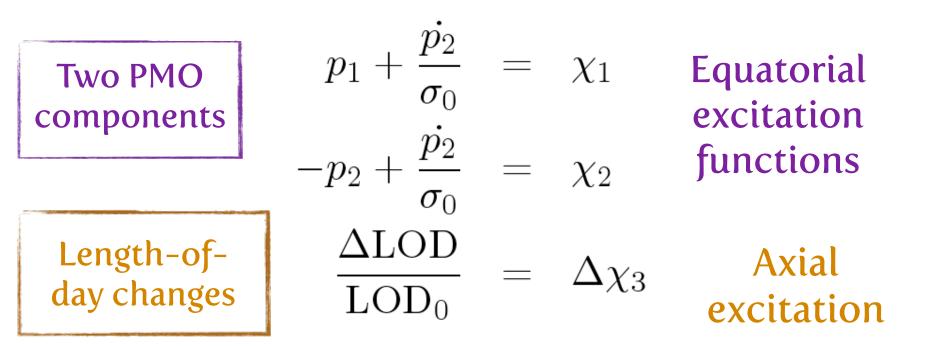
$$\dot{m}_2/\sigma_c - m_1 = -\chi_1 - \dot{\chi_2}/\Omega$$

$$\dot{m}_3 = -\dot{\chi_3}$$

Excitation functions χ_i : nondimensionalized angular momentum exchange with Earth`s fluid shell

HELMHOLTZ

Excitation of Earth Rotation by Angular Momentum Exchange



Barnes et al. (1983) Gross (2009)

Atmospheric Angular Momentum

$$p_1 + \frac{\dot{p_2}}{\sigma_0} = \chi_1$$
$$-p_2 + \frac{\dot{p_2}}{\sigma_0} = \chi_2$$
$$\frac{\Delta \text{LOD}}{\text{LOD}_0} = \Delta \chi_3$$

Mass terms

(moment of

Motion terms

inertia)

Earth)

$$\frac{1}{\sigma_{0}} = \chi_{1}$$

$$\frac{\dot{p}_{2}}{\sigma_{0}} = \chi_{2}$$

$$\chi_{1}(t) = \frac{1.608}{\Omega(C - A')} [0.684\Omega\Delta I_{13}(t) + \Delta \mathbf{h}(t)]$$

$$\chi_{2}(t) = \frac{1.608}{\Omega(C - A')} [0.684\Omega\Delta I_{23}(t) + \Delta \mathbf{h}(t)]$$

$$\chi_{3}(t) = \frac{0.997}{\Omega C_{m}} [0.750\Omega\Delta I_{33}(t) + \Delta h_{33}(t)]$$
Mass terms
(moment of
inertia)
$$I_{13} = -\int R^{2} \cos \phi \sin \phi \cos \lambda dM$$

$$I_{23} = -\int R^{2} \cos \phi \sin \phi \sin \lambda dM$$

$$I_{33} = \int R^{2} \cos^{2} \phi dM$$

$$h_{1} = -\int R [u \sin \phi \cos \lambda - v \sin \lambda] dM$$

$$h_{2} = -\int R [u \sin \phi \sin \lambda + v \cos \lambda] dM$$

$$h_{3} = \int Ru \cos \phi dM$$

() BY

 \bigcirc