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Many experimental  and field studies have been devoted to the understanding 
of non-homogeneous turbulent dynamics. Activity in this area intensified when 
the basic Kolmogorov self-similar theory was extended to two-dimensional 
or quasi 2D turbulent flows such as those appearing in the environment, that 
seem to control mixing [1,2]. The statistical description and the dynamics of 
these geophysical flows depend strongly on the distribution of long lived 
organized (coherent) structures. These flows show a complex topology, but may 
be subdivided in terms of strongly elliptical domains (high vorticity regions), 
strong hyperbolic domains (deformation cells with high energy condensations) 
and the background turbulent field of moderate elliptic and hyperbolic 
characteristics. It is of fundamental importance to investigate the different 
influence of these topological diverse regions. 
 
Relevant geometrical information of different areas is also given by the 
maximum fractal dimension, which is related to the energy spectrum of the flow. 
Using all the available information it is possible to investigate the 
spatial variability of the horizontal eddy diffusivity K(x,y). This information would 
be very important when trying to model numerically the behaviour in time of the 
oil spills [3,4] There is a strong dependence of horizontal eddy diffusivities with 
the Wave Reynolds number as well as with the wind stress measured as the 
friction velocity from wind profiles measured at the coastline. 
Natural sea surface oily slicks of diverse origin (plankton, algae or natural 
emissions and seeps of oil) form complicated structures in the sea surface due 
to the effects of both multiscale turbulence and Langmuir circulation. 
It is then possible to use the topological and scaling analysis to discriminate the 
different physical sea surface processes. 
 
 We can relate higher orden moments of the Lagrangian velocity to effective 
diffusivity in spite of the need to calibrate the different regions determining the 
distribution of mesoscale vortices and other dominant features [5,2]. 
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We present relationships used to parameterise the sub-grid turbulence in terms 
of generalized diffusivities that take into account the topology and the self-
similarity of the sea surface environment. 
 
Multifractal analysis can also be used to distinguish fresh oil spills and natural 
slicks in the ocean surface, with residence time the diference diminishes (The 
Damkholer number scales the time with rough weather accelerating 
the dilution). Modelling the Rossby deformation scale dynamics is fundamental 
to predict oil spill behaviour as this range is the most energetic. 
 
The geometric and topological features of the interaction between 
the spectral and multi-fractal structure of the fronts driven by  
acceleration induced instabilities RT as well as of different wakes 
have been investigated following ImaCalc Fractal box-counting 
algorithm for the different sets of  different intensity and marked 
value ranges, Grau(2005). Further analysis on Mixing 
experiments with a similar set up as in Linden and Redondo(1991) 
have been used to relate multifractal and spectral measurements 
of the density, velocity and vorticity fields as they evolve, the 
volume fraction and the mixing products is also detected with 
chemical reactive and non reactive tracers.  
 

 
 
 
 



 
 
 

   
The methodology that relates a generalized intermittency 
(Mahjoub et al 1998) and anomalous scaling while mixing is 
taking place is used to evaluate scalar and tracer diffusivity and it 
is applied both in the RT mixing fronts as well as in other 
complex flows (Diez et al (2008), Vila et al(2011), Layzet et al. 
( 2008,2010)). The regions of localized mixing, have a higher 
range of multifractal dimension values, and using box-counting 
and wavelet analysis, where the turbulent cascade reaches the 
Batchelor scales indicates the statistical structure of the instability 
driven mixing process. (Fig. 1.) 
 
 
 



It is important to measure diffusivity and mixing efficiency, 
specially when non homogeneous turbulence is produced by one 
or several body forces like buoyancy, rotation or magnetic fields. 
The role of internal and inertial waves seems to affect the locality 
of the cascade processes. Arquimedes and Coriolis forces produce 
changes in the scaling (Redondo et al 1996, 2003, 2008) which is 
related to the local Richardson, Ri, Reynolds and  inverse Rossby, 
1/Ro numbers is used to identify the dominant mixing instabilities 
and the changes in spectra and intermittency 
 
 

  
Fig 1. Visualization of a turbulent grid wake (Layzet et al 2008-2010) 

 
Most of the mixing taking place in the sides of the coherent 
structures, i.e. blobs and spikes. The use of LES simulations and 
of KS synthetic turbulence is compared as reported by Redondo 
and Garzon (2004), Redondo et al.(2006)  where numerical 
simulations agree with the experiments and gives further insight 
on the different cascading processes that take place in the flow, 
mainly the tracer density spectra, the velocity, the vorticity  
spectra and the multi-fractal evolution.  
 



     
 

Fig 2. Visualization of a density interface in a stratified zero-mean flow 
 
Mixing efficiency is estimated locally, both in time and space 
relating the maximum fractal dimension of the velocity and 
volume fraction sets and comparing the LES and the experiments. 
 

                 
 

                 
 
Fig 3. Visualization of a Rayleigh Taylor Experiment and LES simulation 

 
Overall mixing efficiency and the evolution of local mixing 
efficiency are compared for a set of low Atwood number 



experiments and LES simulations of the Rayleigh-Taylor 
instability (Fig 3.). The differences between the  acceleration of 
the RT fronts, pressure shock induced compressible RM fronts 
and rotating-stratified interacting vortices, have different 
topologies and produce very different local and global mixing 
descriptors, probably because of the cascade asymmetry and 
intermittency, these effects and the evaluation of diffusion are 
also discussed with environmental and geophysical applications 
in mind. 
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Relevant geometrical information of different areas is also given by the 
maximum fractal dimension, which is related to the energy spectrum of the 
flow. Using all the available information it is possible to investigate the 
spatial variability of the horizontal eddy diffusivity K(x,y). This 
information would be very important when trying to model numerically the 
behaviour in time of the oil spills  
 
There is a strong dependence of horizontal eddy diffusivities with the Wave 
Reynolds number as well as with the wind stress measured as the friction 
velocity from wind profiles measured at the coastline. Some of these results 
have been published in Bezerra et al. (1998). 
 
 
 
 
 



 
 
 

 
 
 
 

 
 



 
 
 
 
 

 
 
 



 
 
 
The theory and applications of fractal analysis is a rapidly evolving 
research field both from a mathematical approach and in experimental and 
field applications. The basic theory and method of box-counting used in 
ImaCalc tool (Grau, 2005) was followed and we used self-similarity to 
identify different dynamic processes that might influence the radar back-
scattering from the ocean surface. The image analysis algorithms are able 
to detect the selfsimilar characteristics for different SAR intensity levels, i.  

 
The fractal dimension D (i) is then a function of intensity and may be 
calculated using the box counting algorithm 
  D = logN(i) /log e                
 where N(i) is the number of boxes of size e needed to cover the SAR 
contour of intensity i. The algorithm operates dividing the surface into 
smaller and smaller square boxes and counting the number of them which 
have values close to the SAR radiation level under study. Let us assume a 
convoluted line, which is embedded in a plane (that is why it is usually 
referred to as D=2, or fractal dimension within an Euclidean plane of 
dimension 2). If it is a single Euclidean line, its (nonfractal) dimension will 
be one. If it fills the plane its dimension will be two. The boxcounting 
algorithm divides the embedding Euclidean plane in smaller and smaller 
boxes (e.g., by dividing the initial length L0 by n, which is the recurrence 
level of the iteration). For each box of size L0/n it is then decided if the 
convoluted line, which is analysed, is intersecting that box. The number N(i) 
is the number of boxes which were intersected by the convoluted line (at 
intensity level i). Finally, we plot N versus L0 /n (i.e., the size of the box e) 
in a loglog plot, and the slope of that curve, within reasonable experimental 
limits, gives the fractal dimension. Note that the sign of the fractal 
dimension is not relevant. This is performed for different contour  levels 
corresponding to different SAR intensity 
 

0 1 2 3 4 5 6 7 8
Distance from ship (km)

1

1.2

1.4

1.6
D



 
The multifractal analysis of the different backscattered intensity levelsin 
SAR imagery can be used to distinguish between natural and man-made sea 
surface features due to their distinct selfsimilar properties. 
     
     The differences are detected using the multi-fractal box counting 
algorithm on different sets of SAR images giving also information on the 
age of the spills.  
 
      Recent man-made oil spills in the sea surface are characterized by the 
low fractal dimension values (D < 1.2) over the region of low reflectivity in 
SAR images, on the other hand natural oil slicks show a typical parabolic 
shape with maximum of D » 1.4.  

 
 
 
 
 



The comparative statistical analysis of both the 39 years’ time tankers known 

shipwrecks in European coastal waters and the relatively small but common spills shows a 

power relation between the number of spills and their respective sizes over a seven decade 

interval.  In the logarithmic scale this relation shows a good approximation to Zipf’s law (law of 

increase of entropy) (Zipf, 1949). This basic law is simply described as i fi = C, where i is the 

event rank, fi is the frequency of its occurrence and C is a constant ), or  

fi ≈ C i-a                                                                 (2) 

In our case fi is the number of cases of the detection of the oil spills of a certain area 

rank and i is (the rank or complexity or size of the event (in our case, it is the average area of 

the spills). The exponent a is a power, whose value is 1 if the described process is independent 

of the scale. Transforming equation (2) to a logarithmic scale, we obtain:   

logfi = logC - a log(i)                                                      (3) 

which is described as a line of slope  a and intercept b. 

y = b - ax                                                                (4) 

where now x is log (i),  y is logfi and logC is the constant b.  

 

Table   The exponent a and coefficient of determination R-squared of equation 4 for the small 

spills considering different persistence times together with the large accidental spills of  figure  

 

 

 

 

 

The Figure  shows the average annual number of small spills (more than 0.1 Km2 and 

less than 75 Km2) for different persistences on the sea surface and at the same time the 

average annual probability of great spills of more than 35.000 Km2.  The data is plotted as a 

Persistence of small oil spills 
(days) 

- a R 

2 -1.077913429 0.989586 
3 -1.041143478 0.989522 
4 -1.014636617 0.989362 
5 -0.994257447 0.989154 
6 -0.9770941452 0.988919 
7 -0.9635402605 0.988691 

variable persistence -1.132997351 0.982306 



function of their respective areas, both for small and large oil spills occurred in European 

coastal waters according to tables 4. Also in figure 10 a spatial-temporary normalization of the 

data sets with different scales was considered. The crude spills’ persistence time period is 

related to many environmental factors, such as surge, wind and dominant current structure. 

Therefore the probability of detecting the real number of spills with just one observation every 

35 days will strongly depend on the environmental conditions and a low persistence will hamper 

the possibility of detection.  

According to the table, the coefficient -a varies between -1,08 (2 days’ persistence of 

spills) and -0,96 (7 days’ persistence).  The  best fit for both small and large spills  corresponds 

to a 5 day average persistence, as seen in Figure 10, which adjusts better to the Zipf’s law 

distribution (coefficient a = 0.994, i.e. close to 1).  

The Zipf’s law (Zipf, 1949, Mandelbrot 1977) indicates that the frequency of the 

occurrence of some events associated with the human activities is larger at small scales than at 

big scales. The function that fits well this rank – frequency dependency has a hyperbolic form 

(which in a logarithmic scale depicts a straight line with slope -1).  This law is almost universal 

and takes place in linguistic sciences as noted first by (Zipf, 1949) (the frequency of the 

occurrence of the words with less letters is larger than that of the long words in any language), 

in social statistics (the number of  cities versus their population; Gabaix, 1999; Reed, 2002), in 

ecology (the biomass of insects versus whales, the biological objects’ size distribution 

(Camacho and Sole, 2001; Reed et al., 2002)), in geophysics (Sornette et al., 1996) etc.  Also it 

is used to new communication technologies, for example, into Internet’s facilities (the automatic 

index of thematic texts by key words (Popov, 1998) or in web access statistics (Breslau et al., 

2000)).  Mandelbrot(1977) generalized the law in terms of two fractal dimensions when 

analysing clustering of islands of fractal contours or in aggregation of events, if D is the fractal 

dimension of the clustering and Dc that of the basic process, then: 

                                        a = Dc/D                                                        (5) 

when both processes are uniform then Dc=D and Zipf’s law is recovered fi = C / i  

http://www.ess.ucla.edu/facpages/sornette.html�


In our case, Zipf´s law application to the distribution of oil spills according to their sizes 

allows the following conclusions:   

The average period of the 5 days’ persistence of small spills seems more probable in 

real average environmental conditions because it corresponds better to the Zipf’s statistical 

distribution (i.e. their adjustment coefficient a is closer to 1). There is also justification of this 

average persistence, which should also depend on the size of spill as a reflection of Richardson 

turbulent dispersion law K∝ l4/3 where K is the turbulent diffusion coefficient and l  is the average  

size of the spill (see Platonov, 2002). 
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Figure  Average annual number of small spills for different time periods of persistence in the sea 

surface together with the average annual number of great spills versus their respective areas.  

The mean number of the spills for the different persistence time periods are indicated by: ∇ - 2 

days,  - 3 days,  - 4 days, • - 5 days,  - 6 days, ∆ – 7 days,   Different lines are the power fits 

according to the data of tables 3 and 4   Also plotted as +  are the prediction of the number of 

small oil spills if the persistency is a function of the size and weather conditions. 
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