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Abstract
We consider an elementary model coupling a three-“box” ocean and two-“box” atmosphere.  The present form of largest-scale overturning ocean 
circulation is built in.  Coupling adds two degrees of freedom, hence two new time-scales compared with ocean or atmosphere alone.  With 
temperatures and transports as the only variables, the model has a unique, stable, steady state: all perturbations on the steady state decay.  The 
new time-scales are some decades, corresponding to adjustment of ocean temperature above the main thermocline.  [Atmosphere-only relaxation 
times are days to months; ocean-alone overturning relaxation times are centuries].  No oscillatory modes are found, probably because the model 
has little spatial description or anomaly propagation.  Adding salinities as oceanic variables, and exchanges of water with the atmosphere, allows 
instability in a limited range of relative “box” sizes.  Growing oscillations with time-scales of centuries are possible if the density effect of fresh-
water flux via the atmosphere is significant and tropical “upwelling” is small relative to the total transport from the tropical to the northern ocean.  
Overall this evidence suggests that (ocean) models should allow spatial propagation if internal (climate) variability is to be represented.

1. Introduction
Climate is a function of the coupled ocean and atmosphere.  Ability to predict future 
climate depends on good understanding and modelling of this coupled system.  
Climate projections for future decades are complicated by inter-decadal “internal” 
variability as large as several decades of average climate trend.  What are the 
possible origins of this variability?  The question is considered here by coupling the 
ocean model of Johnson et al. (2007), reduced for the present form of meridional
overturning and uniform salinity, with a two-“box” atmosphere.  Because salinity 
anomalies have been suggested as contributors to oscillatory oceanic behaviour, 
salinity is also considered as another variable in each box of the ocean (treated 
alone).
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2. Formulation
Ocean
In the figure, the q are transports with the present form of meridional overturning, T are 
temperatures, D is tropical thermocline depth, box volumes are Vn, Vd, AtD, surface 
areas are At , An .  As in Johnson et al. (2007)
qU =  KAt/D,     qn =  qn′(Tt – Td)    where  qn′ = gαD2/(2fn).
Here K is a vertical diffusivity, empirically O(10-4m2/s) (Munk, 1966), g is acceleration 
due to gravity, α is thermal expansion coefficient, fn is northern Coriolis parameter.

Atmosphere
Shorter-wave solar radiation is B (Bt > Bn), atmospheric temperatures Ht , Hn, radiation 
to space is σH4 (σ = 5.67×10-8Wm-2 °K-4 is Stefan’s constant).  Heat fluxes warming the 
tropical ocean and cooling the northern ocean are 

Et =  Mt Cp (Ht – Tt) / te ,            En =  Mn Cp (Hn – Tn) / te .
Here Mt, Mn are masses of tropical and northern atmosphere, Cp is specific heat of air, 
te = O(3.105s) is a relaxation time to equilibrate atmospheric to oceanic temperature. 
Northward atmospheric heat flux    W  =  (Mt+Mn) Cp (Ht – Hn) / tw
with time-scale tw = O(107s) (months) to equilibrate tropical & northern atmospheres.

Equations
Ocean volumes:    At ∂tD =  qS + qU – qn =  qS + KAt/D – gαD2(Tt – Td) / (2fn)  (O1)
Deep-ocean heat:  Vd ∂tTd - Td At ∂tD =  ∂t(TdVd)  =  qnTn – (qS + qU)Td. (O2)
Atmosphere heat (two boxes)

MtCp∂tHt =  BtAt – MCp(Ht – Hn)/tw – MtCp(Ht – Tt)/te – σAtHt
4 (A1)

MnCp∂tHn = BnAn + MCp(Ht –Hn)/tw + MnCp(Tn –Hn)/te – σAnHn
4 (A2).

Tt and Tn are fixed if the ocean and atmosphere are treated separately, but variables in 
the coupled system. Upper-ocean heat (two boxes):

ρwCw(AtD∂tTt + AtTt∂tD)   =  ρwCw[Td(qS+qU) – Ttqn] + MtCp(Ht – Tt)/te (E1)
ρwCwVn∂tTn =  ρwCw(Tt – Tn)qn – MnCp(Tn – Hn)/te . (E2)

Here ρw , Cw are the density and specific heat of sea water.
These are six evolution equations for the six variables D, Td, Ht, Hn, Tt, Tn.
There is a unique steady solution (∂t ≡ 0).

2'. Departures from steady state
Small departures D1, Td1 , Tt1 , Tn1 , Ht1, Hn1 :  subtract the steady state from the 
six equations.  This gives six linear equations for the six perturbation quantities.  
The other quantities are constant with their steady-state values.  Hence we 
expect solutions as exp(λt).  Substituting λ for ∂t in gives six homogeneous 
equations with non-zero solution only if the determinant of coefficients (for D1, 
Td1, Tt1 , Tn1 , Ht1, Hn1) is zero.  This is a 6th order polynomial equation P(λ) which 
we cannot expect to solve explicitly.  However, we use the wide range of time-
scales (days to centuries)  to seek P(λ) = 0 in ranges of λ.

The results are six negative roots for λ.
For λ of order 10-10s-1:  λ = – qn/Vd and λ = – (qU+2qn)/Vt
These are the two solutions in the ocean-alone model, representing: (i) Td
relaxes to its equilibrium value (Tn) with rate qn/Vd or time scale Vd/qn (several 
centuries); (ii) D to its equilibrium value with rate (qU + 2qn)/ Vt or time scale 
AtD/(qU + 2qn) of order one century.  Atmospheric temperatures are well-adjusted 
to ocean temperatures and radiation and hardly affect the heat balance.

For λ of order 10-9s-1:    λ ≈ –4σHt
3At/(ρwCwVt)    and    λ ≈ –4σHn

3An/(ρwCwVn)
to lowest order (in particular for small exchange between the tropical and 
northern atmosphere, i.e. small tw-1).  These solutions are the two “new” ones; 
the values λ are real and negative for the parameter ranges considered.  They 
represent adjustment of the upper tropical and northern ocean temperature to 
solar heating; they depend mainly on the temperature-sensitivity of heat radiation 
rate, relative to the thermal capacity (depth V/A) of the ocean.  The heat is 
primarily in the ocean; atmospheric temperatures Hn, Ht are well-adjusted.

For λ of order 10-6s-1: λ = –te-1 – (ωn+ωt)/2 ± {(ωn–ωt)2/4 + r Ωw
2/te2}1/2

for the atmosphere alone.  The solutions represent adjustment of the 
atmospheric temperature to the underlying upper-ocean temperature.  [The ω
are adjustment rates for the respective atmospheric box to solar heating; 
modifications by W appear in the form of ω and the Ωw

2 term].  For coupled 
atmosphere and ocean, the λ are formally the same, but the ω are modified by 
oceanic adjustment (only slight  as oceanic thermal capacity is large).  
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3. Ocean alone with salinity.
All the modes in section 2 show decay without oscillation.  Can salinity affect this? 
Consider the three-box ocean (only) as illustrated.  As in Johnson et al. (2007)
qU =  KAt/D,         qn =  qn′[α (Tt – Td) – β(St – Sd)] where  qn′ = gD2/(2fn).
Here the S are salinities and Ê is a fresh-water transfer from the upper tropical to 
northern ocean via the atmosphere.  Equations are:

Ocean volumes:
At ∂tD =  qS+qU–qn –Ê =  qS + KAt/D – Ê – gD2[α(Tt –Td) – β(St –Sd)] / (2fn)    (OS1).
Deep-ocean heat [Td(OS1) added]:   Vd ∂tTd =  (qn + Ê)(Tn – Td )                 (OS2).
Tropical salt [St(OS1) subtracted]:   At D ∂tSt =  (qS+qU)(Sd –St) + ÊSt (OS3).
Northern salt: Vn∂tSn =  qn (St – Sn) – ÊSn (OS4).
Deep-ocean salt [Sd(OS1) added]:    Vd ∂tSd =  (qn + Ê)(Sn – Sd )                 (OS5).

Steady state  (∂t ≡ 0)
Td = Tn from (OS2), Sd = Sn from (OS5), St = Sn(1+Ê/qn) from (OS4), qn+Ê = qS+qU
from (OS3). Sn is specified by the total salt in the ocean.  Then

qn =  gD2[α (Tt – Tn) – βSnÊ/qn]/(2fn)    (quadratic for qn)      with roots
qn ≈ gD2α (Tt–Tn)/(2fn) – βSnÊ/(α(Tt–Tn))    and    qn ≈ βSnÊ/[α(Tt–Tn)]

for realistic parameter values.  The larger root (first formula) applies if density 
driving of present overturning is mainly driven by temperature gradient. 

3'. Departures from steady state
Small departures D1, Td1 , St1 , Sn1 , Sd1 :  subtract the steady state from (OS1-5).  
This gives five linear equations for the five perturbation quantities.  The other 
quantities are constant with their steady-state values.  Hence we expect solutions as 
exp(λt).  Substituting λ for ∂t gives five homogeneous equations with non-zero 
solution only if the determinant of coefficients (for D1, Td1 , St1 , Sn1 , Sd1) is zero. 

(OS2) stands alone and gives λ = –(qn+Ê)/Vd .  
Adding all, λ = 0 is a solution budgeting total salt.

Write         a ≡ AtD/Vn, đ ≡ Vd/Vn, Λ ≡ λVn/qn, U ≡ qU/qn, ê ≡ Ê/qn, Β ≡ qn′βSnÊ/qn
2

If Ê = 0 (no evaporative transfer from the tropics to the north), then
Λ= –(U+2)/a or   Λ = –[a-1+đ-1+1]/2 ± {[a-1–( đ-1+1) ]2 – 4đ-1}1/2/2
i.e. unconditional decay although the pair of roots may be oscillatory.

If Ê≠0 but (realistically) Β < 1, all modes decay.
For larger B, there can be growing oscillatory modes, if U is small enough: 
(0 <) U < ½{[9+8a/(đ+1)]1/2 – 3}    if ê<<1   is a necessary condition.
E.g.  U = 0, small ê, a=1, đ=2, B = 110/9:  0 = (Λ+23/2i/3)(Λ–23/2i/3)(Λ+9/2).
The oscillatory modes grow if B is a little larger than 110/9.

Oscillations may grow if fresh-water flux Ê is large and upwelling qU is small. 

4. Conclusions
Combining ocean & atmosphere inevitably introduces new time-scales (2 more here).

All modes decay in this coupled model of atmosphere and ocean (temperature only).

The two new time-scales & modes represent adjustment of the tropical and northern 
upper ocean temperatures to balance solar heating and radiation.

The new time-scales (decades) are less than the centuries for overturning circulation.  

Undamped oscillatory modes are enabled by including (i) salinity as a variable, (ii) a 
significant density effect of fresh-water flux via the atmosphere, provided (iii) tropical 
“upwelling” qU is small enough relative to qn (the tropical-to-northern ocean total).  

The time-scale for these salinity-enabled undamped oscillatory modes is Vn/qn.

To represent internal variability, ocean models should allow spatial propagation.
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