

Low-cost and easy experiments about the water in the atmosphere

Marcel Costa¹, Jordi Mazón²

(1) IES Castellar. Departament d'Educació. Generalitat de Catalunya. (<u>mcosta1@xtec.cat</u>)
(2) Applied Physics Department, Technical University of Catalonia – BarcelonaTech. (jordi.mazon@upc.edu)

Introduction

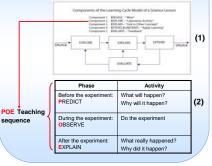
• Atmospheric water and the changes it suffers are essential in the water cycle.

• The concepts related to water are present in the educational curricula of many levels.

• There are many misconceptions from the students related with atmospheric water.

• We present some easy experiments which can help in the learning of these concepts.

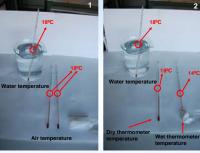
Why low-cost?


- Cheap and simple to do: promotes students autonomy.
- It only requires part of the time of a class session.
- It can be adapted to many different levels.
- It can be carried out either in the laboratory or in the classroom.

- Ocean of misconceptions
- Some examples:
 - Clouds are made of water vapor.
 - Air humidity and temperature are independent parameters.
 - In cloud formation, only the water vapor is needed.

Didactics

With the aim of a meaningful learning of students we propose:


Experiment descriptions

We show 5 examples of this kind of low-cost experiments. We detail:

• <u>Key concepts</u>: main scientific concepts of the educational curricula which could be approached with each activity.

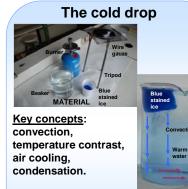
• <u>Key questions</u>: strategic questions which teachers can propose to students in order to stimulate reflection and understanding about the concepts.

A crazy thermometer?

<u>Key concepts</u>: evaporation, vaporization heat, air humidity. <u>Key questions</u>: What's the initial temperature of all thermometers?

Which thermometer is cooler? Why?

What are clouds made of? Wire Baker Burner Bide Try with lee Bide ATERIAL Wire waser Image Wire waser


humidity and cooling, condensation

Key questions: Is water vapor visible? What happens when air cools?

Let's generate a cloud			
Bicycle	2	3	4
Rubber Plastic bottle Lighter Piece of paper	1st ingredient: Water vapor 3rd ingredient	2nd ingredient: Condensation nuclei (smoke)	Pressure increase: Air warming
MATERIAL 1	Pressure decrease: Air cooling		Our cloud is here!
Key concepts: water			
vapor, air pressure,			
temperature,			AS-

Key questions: What happens when the pressure of moist air decreases?

condensation nuclei.

Key questions: How are the particles in the water moving? What atmospheric phenomena could originate a movement like this?

Does water follow a cycle?

Key questions: Why does water evaporate? Why do appear drops in the tray? Why do drops grow and fall?

References

(1)Nelson J., Nelson J., 2006. Learning cycle model of a science lesson. The Physics Teacher. 44: 396-397. (2) White, R. Crustone, R. 1992. Proving understanding. The Palmer Press.