

Nazik Ogretmen^(1,2), M. Namik Cagatay⁽²⁾ and PaleoVan Scientific Party ⁽¹⁾Istanbul Technical University, Eurasia Institute of Earth Sciences, 34469 İstanbul, Turkey ⁽²⁾Istanbul Technical University, EMCOL, Faculty of Mines, 34469, Istanbul, Turkey

INTRODUCTION

Lake Van, located in East Anatolian Plateau, Turkey, is the largest soda lake in the world having a volume of 607 km³ and a maximum depth of 461 m (Fig. 1). It is a closed lake with a 9.2 of pH and salinity of 22‰ (Reimer et. al., 2009). We studied ICDP sediment cores from a water depth of 245 m in the Northern Basin using multi proxy analysis, including MSCL, total organic carbon (TOC), total inorganic carbon (TIC) and $\delta 18O$ and $\delta 13C$ of bulk carbonate. The age model is based on three AMS radiocarbon determinations, tephra ages (Landmann et al., 1996) and varv counting.

The main objective of the study to decipher past climate conditions in Eastern Anatolian Plateau over the last 27 ka.

RESULTS AND DISCUSSION

 The lithology of the composite section in the Northern Basin includes banded and laminated mud, homogeneous grey mud, tephra, turbidite -homogenite mass flow, and deformed sediment units (Fig. 2). Multi-proxy analyses were mainly conducted on the banded and laminated mud and homogeneous grey mud that are the autochtonous lake sediments.

• δ 18O and δ 13C values are closely correlated (r=0.88-0.95; Fig. 3), indicating that Lake Van has been a closed lake over the last 27 ka. High amplitude oscillations (4-5 ‰) in δ 18O and δ 13C values, suggesting climatically driven lake level oscillations during the period.

 Very low δ18O values (<-4‰) are observed at 4-2, 17-14, 21.3 and 27-26 ka cal BP, which probably correspond to relatively high lake levels. The highest δ 18O value (+4.2 ‰ VPDB) is found at 10.75 ka BP, corresponding to a low lake level. At this time TOC and TIC values show opposite trends.

 TOC and TIC profiles are positively correlated for the Holocene (r=0.44) and show no significant correlation for Oxygen Isotope Stage-2 (OIS) (r=-0.08), with both variables being higher for the Holocene than OIS-2 (Fig 2).

• For the OIS-2 (excluding the Younger Dryas), TOC and TIC values are relatively lower (TOC<2 wt% and TIC<4 wt%) and detrital input are higher (as shown by magnetic susceptiblity profile) than those for the early Holocene values; the low organic productivity during the former period is associated with cold climate conditions and relatively high lake levels.

• The highest TOC values (>4 wt%) are observed during 9-6.5, 5.7 and 5-4 ka cal BP. Significant positive correlations between TOC, TIC, $\delta 180$ and $\delta 13C$ values during these periods suggest that the high TOC and TIC values may be related to high organic productivity, probably associated with relatively low water levels and effective nutrient cycling in the lake.

PALEOENVIRONMENTAL CHANGES IN LAKE VAN DURING THE LAST GLACIAL-HOLOCENE

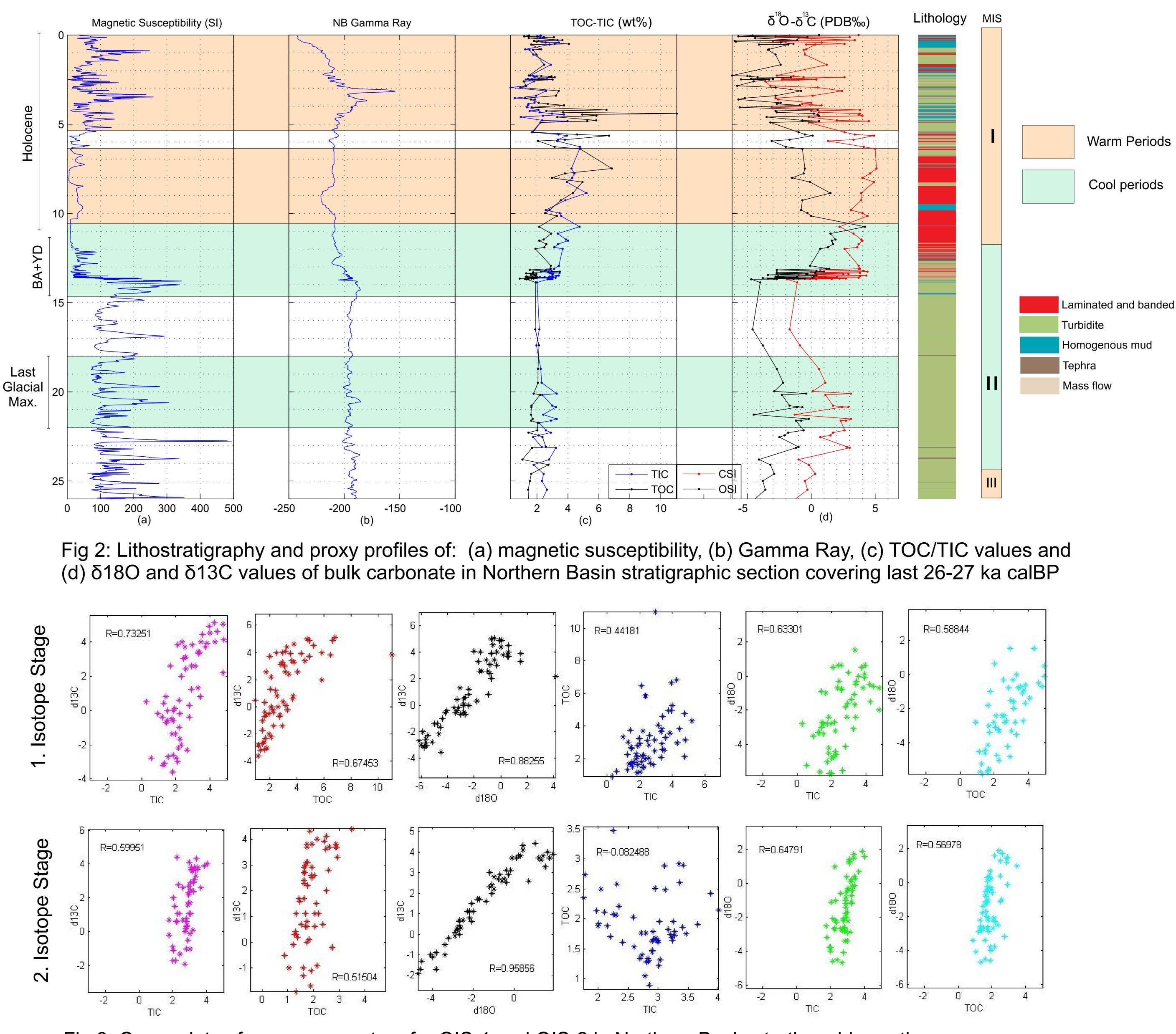
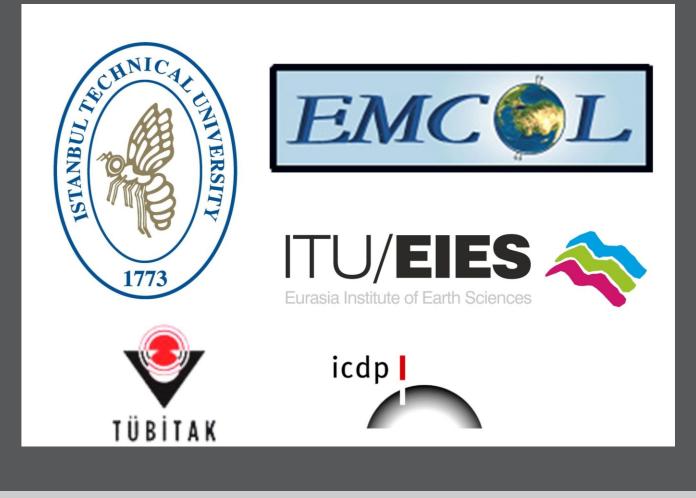



Fig 3: Cross-plots of proxy parameters for OIS-1 and OIS-2 in Northern Basin stratigraphic section.

STUDY AREA

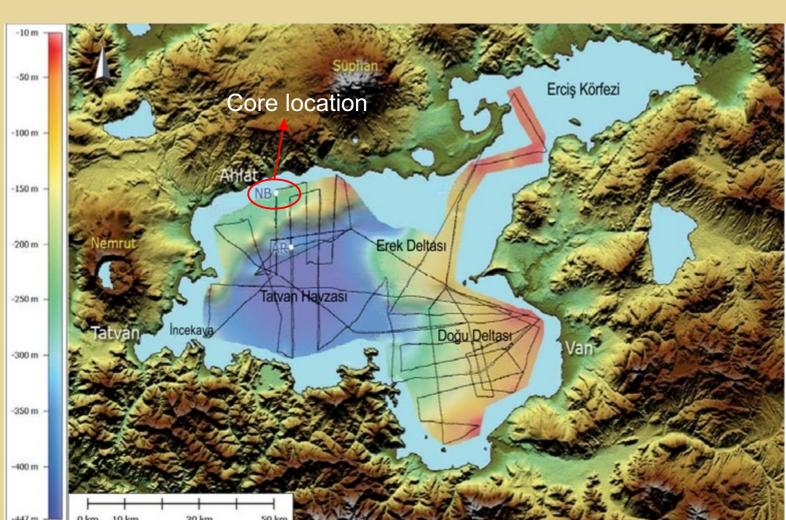


Fig 1.Bathymetry of Lake Van-Eastern Anatolia, showing the location of the ICDP Drill site in Northern Basin (NB)

ACKNOWLEDGEMENTS

We thank the PaleoVan team for support during collection and sharing of data. The authors acknowledge funding of the PaleoVan drilling campaign by the International Continental Scientific Drilling Program (ICDP), the Deutsche Forschungsgemeinschaft (DFG), the Swiss National Science Foundation (SNF) and the Scientific and Technological Research Council of Turkey (Tübitak). Help for field and lab work by ITU-EMCOL co-workers are gratefully acknowledged

REFERENCES

- Degens, E.T., Wong, H.K., Kempe, S., and Kurtman, F., 1984, A Geological Study of Lake Van, Eastern Turkey: Geologische Rundschau, v. 73, p. 701-734.
- Kempe, S., Degens, E.T., 1978, Lake Van varve record: the past 10,420 years, in Degens, E.T., Kurtman, F, ed., Geology of Lake Van: Ankara, Turkey, MTA Press, p. 9.
- Landmann, G., Reimer, A., and Kempe, S., 1996, Climatically induced lake level changes at Lake Van, Turkey, during the Pleistocene/Holocene transition: Global Biogeochemical Cycles, v. 10, p. 797-808.
- Reimer, A., Landmann, G., and Kempe, S., 2009, Lake Van, Eastern Anatolia, Hydrochemistry and History: Aquatic Geochemistry, v. 15, p. 195-222.

Wick, L., Lemcke, G., and Sturm, M., 2003, Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey: Holocene, v. 13, p. 665-675.

