Lagrangian reconstructions of tracer fields at ocean surface

Stefano Berti and Guillaume Lapeyre

Laboratoire de Météorologie Dynamique ENS Paris

EGU General Assembly 27/4/2012 Vienna

Motivation

turbulent ocean: spatiotemporal variability over a large range of scales

interactions between mesoscale eddies (\sim 100 km)

 \Rightarrow smaller scale structures (\sim 10 km)

submesoscale:

vertical transport
[Lévy 2008; Klein and Lapeyre 2009]

strongly energetic

[Capet et al. 2008; Klein et al. 2009]

[MODIS Aqua, sea colour, Bay of Biscay]

Motivation

- Spatial resolution of satellite data:
 - Sea Surface Height SSH (T/P, Jason, ...) $\rightarrow \Delta x \approx 100 \text{ km}$
 - Sea Surface Temperature SST (AMSR-E) $\rightarrow \Delta \approx 50 \text{ km}$
 - Sea Surface Temperature SST (AVHRR) $\rightarrow \Delta \approx 1$ km (but clouds)
 - Chlorophyll CHL

(SeaWiFS, MODIS) $\rightarrow \Delta \approx$ 1 km (but clouds)

 \Rightarrow Practically **no access** to submesoscales on a global scale

Reconstructions: Lagrangian method

available databases (SSH, SST, CHL) \Rightarrow tools for reconstruction time series at low resolution ($\phi_{LR}(t), \phi_{LR}(t - \Delta t), \phi_{LR}(t - 2\Delta t), ...$) \rightarrow small scales

For each particle at $\mathbf{x}_i = i \delta \mathbf{x}$ at time *t*: reverse trajectory to time $t - t_a$

SST evolution in the SQG regime (1)

$$\partial_t \theta + \boldsymbol{u} \cdot \boldsymbol{\nabla} \theta + \beta \boldsymbol{v} = \boldsymbol{F} + \boldsymbol{D}$$

Sea Surface Temperature: $\phi = \theta + \beta y$

Large scale temperature gradient: $\beta = \frac{\partial \phi}{\partial \mathbf{v}}$

Velocity field: $(u, v) = (-\partial_y \psi, \partial_x \psi)$

Forcing: $F = -\kappa \left(\langle \theta \rangle_x - \bar{\theta}_{\text{forcing}} \right)$ (relaxation)

Dissipation: D

S. Berti

SST evolution in the SQG regime (2)

Surface Quasi Geostrophy: interior PV= 0; N =const

$$\left\{ \begin{array}{ll} \mathbf{Q} = \nabla^2 \psi + \frac{\partial^2 \psi}{\partial z^2} & (\mathsf{PV}) \\ \frac{\partial \psi}{\partial z} \mid_{z=0} = \theta_s & (\mathsf{BC}) \end{array} \right.$$

PV inversion $\Rightarrow \hat{\psi} = \frac{1}{k}\hat{\theta}$ at the surface

 SQG correctly represents mesoscale and submesoscale dynamics of upper ocean layers

[Held et al. 1995; Lapeyre and Klein 2006; Isern-Fontanet et al. 2006; Klein et al. 2008]

~	-			
S	в	ρ	r	tı.
Ο.	-	c		•

Reconstruction of SST fields

original ($N_o = 512$); $t_0 = 50$

- (1) Direct numerical simulations (SQG) with No
- (2) Degradation of both \boldsymbol{u} and ϕ at $n \approx N_o/8$
- (3) Lagrangian reconstruction with $N = N_o$ particles

Reconstruction of SST fields

original ($N_o = 512$); $t_0 = 50$ (1) 1.5 -0.5 degraded ($n \approx N_o/8$); $t_0 = 50$ -1.5 (2)

reconstructed (N = 512); $t_0 = 50$

- (1) Direct numerical simulations (SQG) with N_o
- (2) Degradation of both \boldsymbol{u} and ϕ at $n \approx N_o/8$
- (3) Lagrangian reconstruction with $N = N_0$ particles

Spectra of temperature fluctuations

temperature fluctuation $\vartheta = \theta - \langle \theta \rangle_x$; $\theta = \phi - \beta y$

SQG: $\hat{\psi} = \hat{\vartheta}/k \Rightarrow E(k) \propto \langle |\hat{\vartheta}(k)|^2 \rangle$ kinetic energy spectrum

S. Berti

Growth of rms difference

root mean square difference $\delta \vartheta(t_a) = \langle [\vartheta(t_a; t_0) - \vartheta(t_0)]^2 \rangle^{1/2}$

 $\vartheta(t_a; t_0)$ reconstruction with t_a

 $\vartheta(t_0)$ degraded at t_0 ($t_a = 0$)

S. Berti

Gradients of SST fields

original ($N_o = 512$); $t_0 = 50$

30

20

interest: detection of fronts

intensity of tracer gradients $|\nabla \vartheta| = \sqrt{(\partial_x \vartheta)^2 + (\partial_y \vartheta)^2}$

Gradients of SST fields

original (N_o = 512); t₀ = 50

30

20

reconstructed (N = 512); $t_0 = 50$

backward advection with $t_a = 1.7$

best for $1 < t_a < 2$

interest: detection of fronts

intensity of tracer gradients $|\nabla \vartheta| = \sqrt{(\partial_x \vartheta)^2 + (\partial_y \vartheta)^2}$

Probability distribution of SST gradients

- original at t₀
- reconstructed with *t_a* = 0.5, 1.0, 1.5, ...
- reconstructed with $t_a = 1.7$

Conclusions

Summary

Lagrangian technique for the reconstruction of tracer fields at ocean surface:

- good agreement in a range of advective timescales, even in the presence of an external forcing;
- 2 optimal advection time for reconstructions;
- capability to reproduce the statistics of fronts.

Next steps

- Quantifying the importance of forcing.
- Implementation with satellite data.
- Propagation at depth, using the SQG framework.

S. Berti, G. Lapeyre, to be submitted to J. Phys. Oceanogr.