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1. Introduction 

Please email iamcaojie@gmail.com for codes, or questions. 

2. Theory & Integral formulae 

3. Numerical methods & Exps. 

4. Conclusions & Discussions 

Problems to be solved:           ∆c = a, ∆y = z,   inside the domain; 
∂nc - ∂sy = vn, ∂sc + ∂ny = vs, along the boundary. 

Streamfunction and velocity potential, y and c, are useful scalars of 
flow fields and powerful tools for studies of fluid dynamics.  They 
provide useful tools for weather and climate map analyses, for deriving 
velocity error covariance representations in large-scale data assimilation.  

However the direct usage of y and c in the basic dynamics of the 
rotational and divergent components of the global or regional 
atmospheric circulation has not been well studied.  Main reason lies on 
the lack of ways to compute y and c precisely and conveniently. 

Objective:     to explore the utilities of classic integral formulae for 
computing y and c,  and to design efficient numerical methods to 
accurately compute y  and c  in both regular and irregular domains 
either in the presence or absence of data hole. 

Method: to minimize the difference between the domain-

integrated kinetic energy of the original horizontal velocity and that of 
the reconstructed one, i.e.,  J = ∫Ddx|c + ky - v|2. 

(c, y) = (ci, yi) + (ce, ye) + (cd, yd) 

The internally induced solution 
          ci = (2p)-1∫Ddx’a(x’)ln|x-x’|; yi = (2p)-1∫Ddx’z(x’)ln|x-x’|.  
(1) is solved in unbounded domain, therefore, no B.C.  
(2) satisfies: ∆ci = a, and ∆yi = z. 

The data-hole induced solution  
  cd = 1(2p)-1ln|x-xk|∫Skds(vn-vni); yd = 1(2p)-1ln|x-xk|∫Skds(vsi-vs).  

(1) is constructed by placing point sources of a and z inside each data 
hole to represent the net effects of the integrated flux and 
circulation around the data hole.  

(2) should be subtracted from the total solution to modify B.C. and 
solvability conditions for (ce, ye). 

The externally induced solution 
Approach 1:    (ce, ye) = (0, -Imwe), where the complex velocity 

potential we=je-iye=(i2p)-1∫Sdz'we(z')/(z’-z), we(s) = we(s0) + ∫0
sds'[(vs - vsi) 

+ i(vn - vni)] on the boundary S, and ∂nye = ∂sje along S.  
Approach 2:  

2.1 With Dirichlet B.C. : 
ye(x) = ∫Sds'm(x')n'•r/r2 for x in D, and the density function m(x') satisfies: 

ye(x) = πm(x) + ∫Sds'm(x')n'•r/r2 for x on S. 
2.2 With Neumann B.C. :  

ye(x) = -∫Sds'n(x')lnr  for x over D, and the density function n(x') satisfies: 
∂nye(x) = πn(x) + ∫Sds'n(x')n•r/r2 for x on S. 

2.3 With tangential-derivative B.C. : 
ye(x) = -∫Sds'n(x')lnr  for x over D, and n(x') satisfies: 

-∫Sds'n(x')s•r/r2 = vni - vn for x on S. 
(1) This part contains the null space which leads to non-unique solution. 
(2)  ce can be solved exactly the same as ye. 

Cons and Pros when compare to other methods: 

√ The non-uniqueness of solution and compatibility between the 
coupled B.C. are well taken care of.  

√ This method can solve for limited domains of arbitrary shape with 
inner data holes.  

? How to design numerical schemes to reduce discretization error? 
? How to design an automated algorithm to format the B.C. for the 

integrations along irregular external and internal boundaries? 

Dash arrow: the starting point of each searching; shaded arrow: search direction. 

Exp 1: yi
true = ∑m∑ncos(mpx/L)sin(npy/L). 

Exp 3: 

 Discretization schemes for (ci, yi): to deal with the singular point P.  
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S1:  the solution  and source fields are of the 
same resolution; but staggered by ½  △d. 

S2: the same grids; but the grid is nested locally 
around P into P1,2,3,4.  

S3: similar to S2, except that the nested discrete 
integrations around P are replaced by piecewise 
continuous integration.  

Scheme S1 S2 S3 

SCC 1.000 1.000 1.000 

RRD 0.888% 0.856% 0.721% 

 Discretization schemes for (ce, ye): to reduce the error near corners 
when solve for the density function equation.  

Exp 2:    ye
true = -8xy(x2 - y2) - 3(3x2 - y2)y - 8xy - 5y                  ... (1) 

ye
true = ∑m[amsin(mpx/L)sh(mpy/L)+bmsh(mpx/L)sin(mpy/L)] ... (2) 

ye
true Scheme SCC RRD 

(1) 

SD1 1.000 0.485% 

SD2 1.000 0.015% 

SD3 1.000 0.11% 

SN2 0.981 20.7% 

(2) 

SD1 1.000 0.822% 

SD2 1.000 0.060% 

SD3 1.000 0.25% 

SN2 0.728 70.5% 

 Discretization schemes for (cd, yd): to format the B.C for integration.  

SD1: Dirichlet, uniform-boundary grid. 
SD2: Dirichlet, local-nesting.  
SD3: Dirichlet, piecewise continuous integration. 
SN2: Neumann, local-nesting. 
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Exp 4: real wind data 
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Step1: Starts from the SW corner point and 
search eastward point-by-point along each row 
and northward row-by-row for 1st southernmost 
data point, (Io

botW, Jo
botW). 

Step2: Starts from (Io
botW, Jo

botW) and search 
northward for (Io

botE, Jo
botE). 

Step3: for (Io
topE, Jo

topE). 

Step4: for (Io
topW, Jo

topW). 

Step5: search back to (Io
botW, Jo

botW). 

Accuracy.                     √ 
Irregular domains.     √ 
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