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Introduction
The groundbreaking numerical dynamo models of Glatzmaier &Roberts (1995)
and Kuang & Bloxham (1997) received some criticism due to their use of
hyperdiffusivities, whereby small scale processes artificially experience much
stronger dissipation than large scale processes. This stronger dissipation they
chose was anisotropic, in that it was only effective in the horizontal direction
(see the formula given in the methodology box).
Following the same choice as the studies mentioned above (which had most
notablyl0 = 0), Grote et al. (2000) showed in a fully nonlinear context that the
usage of hyperdiffusivities could lead to substantially different dynamics and
magnetic field generation mechanisms.
Without questioning the physical relevance of this parameterization of subgrid
scale processes, we wish here to revisit the use of hyperdiffusivities, on the ac-
count of the observation that today’s models are run with a truncation at much
larger spherical harmonic degree than early models. Consequently, they do not
require hyperdiffusivities to kick in at the largest scales(l0 can be set to several
tens). An exploration of those regions of parameter space less accessible to nu-
merical models could therefore benefit from their use, provided they do not alter
noticeably the largest scales of the dynamo (which are the ones expressing them-
selves in the record of the geomagnetic secular variation).We thus present here
a comparison of the statistics of a reference direct numerical simulation with the
statistics obtained via several hyperdiffusive simulations.

The model
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Fig. 1 A snapshot of the radial component of the field generated by the direct numerical simulation used for

reference. Left: CMB field (full spectrum). Right: CMB field truncated atl = 13

Following the implementation of Dormy et al. (1998); Aubertet al. (2008), we
solve for the conservation of mass, momentum, and energy of aconvecting
Boussinesq fluid in rapid rotation, in addition to the induction equation. We
use the codensity formalism of Braginsky & Roberts (1995).

Boundary conditions: flow: no-slip; field: insulating boundary condition at
ICB and CMB; codensity:Fi (Fo) imposed at ICB (CMB).

Purely chemical drivingfi =
Fi

Fi+Fo
= 100%

Input parameters
E = 10−4, Pr = 1, Pm = 1, Ra = goF

4πρνκΩ
= 14, 000

(

RaΩ = thisRa × E2Pr−1 = 1.4 10−5
)

Output parametersRe = Rm = 240
Scales :̄l (flow) ∼ 13 − 15, l̄ (field) ∼ 14 − 18, m̄ (flow) ∼ 6 − 7,
m̄ (field) ∼ 6 − 7.

Methodology

Following e.g. Glatzmaier & Roberts (1996), we parameterize eddy viscosities using the generic formula

ν(l) = ν0 if l ≤ l0,

ν(l) = ν0

[

1 + a (l − l0)
n
]

if l > l0,

in which l is the spherical harmonic degree,ν0 is a reference value,l0 is the degree above which hyperdiffusivities
start operating, anda andn are real numbers.

CASE horizontal truncation l0 a n

A (ref) 133 N/A N/A N/A
B 44 34 0.1 3
C 64 34 0.1 2
D 64 50 0.1 3
E 85 50 0.1 2
F 85 65 0.1 3

Tab. 1 List of cases considered in this study.

The number of radial levels is the same for each case (192).
Each case (seeTab. 1) was integrated for1.5 magnetic diffusive timeτd

Each model trajectory was sampled uniformly in time every0.002 τd; this generatedNe = 750 samples

Time averaged kinetic and magnetic spectra
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Fig. 2 Time averaged kinetic and magnetic spectra. From left to right: kinetic spectra, magnetic spectra (as a function of spherical

harmonic degreel), kinetic spectra, magnetic spectra (against azimuthal wavenumberm + 1. Letters: cases as listed inTab. 1.

The abrupt change of slope in thel-time averaged spectra points to the impact of hyperdiffusivi-
ties above the cutoff scalel0; this impact is smoothed in them spectra. In addition, we observe
from Fig. 2. that abovel0, the kinetic spectra are less affected than the magnetic spectra by the
truncation. We note that case F is remarkably similar to the reference DNS (case A).

Second-order statistics
We show inFig. 4 part of the second-order statistics that would feed a data assimilation scheme
based on these numerical models (Aubert & Fournier, 2011). As noticed in Aubert & Fournier
(2011), the covariances between the surface field and the flowat mid-depth are mostly to be
found between coefficients sharing the samem; these reflect the importance of convective
columns in the dynamics. For practical purposes, we note that all cases lead essentially to the
same structure for covariances.
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Fig. 4 Sub-blocks of the initial covariance matrix that would enter a data assimilation scheme based on the numerical

models considered here (Aubert & Fournier, 2011). Top row: normalized covariance of the surface poloidal magnetic

harmonic coefficients with the poloidal magnetic harmonic coefficients at mid-depth. Horizontal truncation atl = 15.

Bottom row: normalized covariance of the surface poloidal magnetic harmonic coefficients with the poloidal velocity

harmonic coefficients at mid-depth. Horizontal truncationset atl = 15 for the field andl = 30 for the flow.

Secular variation time scale

In view of using numerical dynamo models for the assimilation of
geomagnetic observations (Fournier et al., 2010, 2011; Aubert &
Fournier, 2011), the secular variation time scaleτsv provides a con-
venient and sensible way of rescaling the time axis of 3D simulations
(Lhuillier et al., 2011a).
The non-dipole SV time scalesτl are modelled by an inverse linear
law of the form

τl =
τsv
l

.

(Christensen & Tilgner, 2004).Fig. 3 displays the secular variation
time scales computed for all the cases considered here. All cases yield
the same fit by an inverse linear law (black line), indicatingthat they
would lead to the same rescaling of the time axis.
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Fig. 3 Secular variation time scalesτl as a function of spherical

harmonic degreel, for spherical harmonic degrees comprised be-

tween1 and13. Black line: fit obtained using an inverse linear law,

for the non-dipole SV. Letters refer to cases as listed inTab. 1.

Summary
A careful use of hyperdiffusivities above some well-chosencut-
off scale does not alter the first and second order statisticsof
numerical dynamo simulations

This cutoff scale has to be chosen in the tail of the kinetic and
magnetic spectra

The use of hyperdiffusivities can allow for a significant reduc-
tion in cpu time when exploring the parameter space

This reduction is likely to become even more pronounced as we
want to approach geophysical conditions
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