

Single-well tracer push-pull test sensitivity w.r. to fracture aperture and spacing

Dealing with a parallel-fracture system of infinite lateral extension, four characteristic regimes of tracer signal sensitivity w. r. to fracture aperture and w. r. to fracture spacing s (whose reciprocal defines fracture density, or the fluid-rock interface area per volume) can be identified during the pull phase of a single-well push-pull test, also depending upon the ratio between push-phase duration T_{push} and a characteristic time scale T_s (defined by $s^2 / D = T_s$, with D denoting the tracer's effective diffusion coefficient):

- early-time regime: tracer signals are sensitive w. r. to fracture aperture, but insensitive w. r. to fracture spacing; sensitivity w. r. to fracture aperture first increases, then decreases with T_{push} / T_s (thus there will be an optimum in terms of to T_{push} / T_s , at early pull times);
- mid-time regime: tracer signals are sensitive w. r. to fracture spacing, but insensitive w. r. to fracture aperture; sensitivity w. r. to fracture spacing increases with T_{push} / T_s ;
- late-time regime: with increasing pull duration, tracer signals become increasingly insensitive w. r. to fracture spacing, while regaining sensitivity w. r. to fracture aperture;
- 'very late'-time regime: sensitivity w. r. to fracture aperture becomes independent upon T_{push} / T_s .

From these different regimes, some recommendations can be derived regarding the design and dimensioning of dual-tracer single-well push-pull tests for the specific purposes of geothermal reservoir characterization, using conservative solutes and heat as tracers.

EGU 2012 – ERE1.6: Deep geothermal energy **XL88** Mon, Apr 23 <EGU2012-4310.pdf>

I. Ghergut, H. Behrens, M. Sauter

Geoscience Centre (GZG),

Applied Geology Dept.,

University of Göttingen,

Germany

gebo focus area 'Geosystem'

MOTIVATION : predict reservoir lifetime

EGU 2012 – ERE1.6: Deep geothermal energy **XL88** Mon, Apr 23 <EGU2012-4310.pdf>

gebo focus area 'Geosystem'

Niedersächsisches Ministerium für Wissenschaft und Kultur

MODEL CONSTRUCTION

EGU 2012 – ERE1.6: Deep geothermal energy XL88 Mon, Apr 23 <EGU2012-4310.pdf>

gebo focus area 'Geosystem'

Forschungsverbund Geothermie und Hochleistungsbohrtechnik

Niedersächsisches Ministerium für Wissenschaft und Kultur

3

IBVP, SYMMETRIES, SCALING

 $\frac{\partial C}{\partial t} + \frac{Q}{2\pi B_{\text{eff}}} \frac{1}{r} \frac{\partial C}{\partial r} - \frac{\alpha |Q|}{2\pi B_{\text{eff}}} \frac{1}{r} \frac{\partial^2 C}{\partial r^2} - \frac{\phi_m D_m}{b} \frac{\partial C}{\partial y} \Big|_{\substack{y=a\\ 0}}^{y=a} = 0$ $\frac{\partial C_m}{\partial t} - D_m \frac{\partial^2 C_m}{\partial y^2} - D_m \frac{\partial^2 C_m}{\partial r^2} = 0$ Terms)

may choose to (not) neglect initial conditions: C(t=0,r)=0, $C_m(t=0,r,y)=0$ boundary conds.: $\mathbf{v}C - \mathbb{D} \cdot \nabla C|_{r=0^*} = InjTracerFlux(t)$ $\mathbf{v}_m C_m + \mathbb{D}_m \cdot \nabla C_m |_{r=0} \approx 0$ $C(t, r \to \infty, y) \to 0$, $C_m(t = 0, r \to \infty, y) \to 0$ $C_m(t,r,y=b) = C(t,r) \quad , \quad \frac{\partial C_m(t,r,y)}{\partial u} \bigg|_{u=0}^{u=u} = 0$ $\frac{\partial C}{\partial \tau} + \frac{\pm T}{2T_{\rm PUSH}} \frac{1}{\rho} \frac{\partial C}{\partial \rho} - \frac{T}{2T_{\rm PUSH}} \frac{1}{\rm Pe_{\rm PUSH}} \frac{1}{\rho} \frac{\partial^2 C}{\partial \rho^2} - \frac{\phi_m a}{b} \left. \frac{\partial C}{\partial \eta} \right|^{\eta=1} = 0$ $\frac{\partial C_m}{\partial \tau} - \frac{\partial^2 C_m}{\partial \eta^2} - \left(\frac{a}{R_{\rm PUSH}}\right)^2 \frac{\partial^2 C_m}{\partial \rho^2} = 0$ scaled equations $\frac{|\mathrm{MxDiff}|}{|\mathrm{Advect}|} = \frac{(\phi_m D_m)}{\phi_m}$ may choose to (not) neglect $C_m(\tau,\rho,\eta=0) = C(\tau,\rho) , \quad \frac{\partial C_m(\tau,\rho,\eta)}{\partial n} \Big|_{\tau=0}^{\eta=1} = 0$

EGU 2012 – ERE1.6: Deep geothermal energy XL88 Mon, Apr 23 <EGU2012-4310.pdf>

gebo focus area 'Geosystem'

Symmetries:

fracture

BAKER

HUGHES

EDO Forschungsverbund Geothermie und Hochleistungsbohrtechnik

axial (w.r.to well axis), neglecting the effects of gravity planar (w.r. to fracture plane) translational (along well axis)

asymptotic uncoupling of fracture spacing:

$$\frac{1}{Q} \left(\frac{\pi r^2 B_{\text{tot}}}{Q} \right) \begin{cases} \frac{1}{a \cdot b} , \text{ 'early'} \\ \frac{1}{a^2} , \text{ 'late'} \end{cases}$$

Niedersächsisches Ministerium für Wissenschaft und Kultur

MODEL PREDICTIONS \rightarrow field test design requirements

C

Fracture	solute push/pull duration needed to determine		heat push/pull duration needed to determine					
the range	fracture aperture	fracture density	fracture aperture	fracture density				
1/cm	{push << 14h, pull < 14h}	{push<14h, pull>>14h} or {push>14h, pull<14h}	{push << 50s, pull < 50s}	{push<50s, pull>>50s} or {push>50s, pull<50s}	14			
1/dm	{push << 58d, pull < 58d}	{push<58d, pull>>58d} or {push>58d, pull<58d}	{push << 1.4h, pull < 1.4h}	{push<1.4h, pull>>1.4h} or {push>1.4h, pull<1.4h}		Ind-		
1/m	{push << 16y, pull < 16y}	{push<16y, pull>>16y} or {push>16y, pull<16y}	{push << 6d, pull < 6d}	{push<6d, pull>>6d} or {push>6d, pull<6d}		hush		
1/(10m)	{push << 1600y, pull < 1600y}	{push<1600y, pull>>1600y} or {push>1600y, pull<1600y}	{push << 1.6y, pull < 1.6y}	{push<1.6y, pull>>1.6y} or {push>1.6y, pull<1.6y}		AT		
1/(30m)	{push << 16000y, pull < 16000y}	{push<16000y, pull>>16000y} or {push>16000y, pull<16000y}	{push << 16y, pull < 16y}	{push<16y, pull>>16y} or {push>16y, pull<16y}	Wellbore –	Ë		
EGU 2012 – ERE1.6: Deep geothermal energy gebo focus area								

XL88 Mon, Apr 23 <EGU2012-4310.pdf> 'Geosystem'

BAKER

HUGHES

Forschungsverbund Geothermie und Hochleistungsbohrtechnik

ersächsisches Ministerium für Wissenschaft und Kultur

5

SENSITIVITY w. r. to FRACTURE APERTURE and SPACING (density)

Tpull << T: b-sensitive , a-insensitive Tpull ~< T: ambiguous inversion Tpull >~ T: a-sensitive , b-insensitive Tpull >> T: b-sensitive , a-insensitive

EGU 2012 – ERE1.6: Deep geothermal energy XL88 Mon, Apr 23 <EGU2012-4310.pdf>

gebo focus area 'Geosystem'

Forschungsverbund Geothermie und Hochleistungsbohrtechnik

Comparison with literature

approach	Małoszews ki, Sudicky	Carrera et al.	Haggerty et al.
analytical / numerical	А	Ν	Ν
multiple- / single- fracture system	MF	MF	MF
inter-well / single-well	IW	IW	SW
dimensionality of fracture flow	1D parallel	1D parallel	1D radial
dimensionality of matrix diffusion	1D	1D	1D
treatment of matrix diffusion	exact	exact, plus very accurate series approximation	like linear- sorption superpos.
asymptotic considerations	3 regimes	2 regimes	2 *regimes

Kocabas, Horne	Pruess, Doughty	Kolditz	(this Report)
A, N	N	A , N	Ν
SF	SF	SF	MF
SW	SW	IW	SW
1D parallel	1D parallel	1D, 2D	1D radial (for scaling analysis), 2D (for numerical analysis)
1D	1D	1D, 2D	3D
exact	uses rough <i>C</i> _f / / Sqrt(<i>t</i>) approximation	uses rough <i>C</i> _f / / Sqrt(<i>t</i>) approximation	exact
n.a.	n.a.	n.a.	3 regimes