An example of model result correction to study the impact of climate change on electricity consumption

Sylvie Parey, Marta Nogaj EDF/R&D/MFEE Guillemette Galloy EDF/R&D/OSIRIS

Goal of the study

- Estimation of the change in the thermal part of electricity consumption
 - Consumption model
 - Conso = f(date, calendar, parameters) = Phc + Pc (+Peff)
 - Only temperature is changed
- Needed data
 - Hourly temperature: France average, suitably weighted / electricity consumption
- Available data
 - Suitable France average 1982-2007
 - ENSEMBLES models results: daily min, max and mean T

Reconstitution of the desired France average

- ▶ ENSEMBLES: ensemble mean
- Quantile matching correction: different approaches
 - Déqué 2007

Correction table

Future climate value: sorted in current climate model distribution then corrected

Michelangeli et al. 2009: CDFt

obs Model current Model future

$$F_{sf}(x) = F_{s}[F_{g}^{-1}(F_{gf}(x))]$$

Reconstitution of the desired France average

Slightly different quantile matching correction

obs Model current Model future

$$x_g \mid F_g(x_g) = F_{gf}(x)$$

 $x_s \mid F_s(x_s) = F_g(x_g)$ Then $x_{sf} = x_{gf} + (x_g - x_s)$

- Daily maximum and minimum temperature
- Hourly data: « normal » daily cycle between min and max

Corrections comparison

First calculation: annual distribution correction

Annual heating energy

Annual temperature distribution

Annual Cooling energy

Annual cycle (from September to August)

Mean monthly heating power

Errors > consumption model precision

Mean monthly cooling power

Comparison of monthly T distributions

corrected model
Observations

Tx: mean annual cycle

Necessity of a monthly correction

January: Tx

May: Tx

corrected model

Results: annual heating and cooling

heating

cooling

Results: month by month

Mean thermal part

cooling

Observations 2070-2100

Conclusion

- Hourly evolutions of France average temperatures
- Climate model bias correction
 - Quantile matching
 - **1987-2002**; 2036-2065; 2070-2100
- Hourly evolution from daily min and max
- Electricity consumption (thermal part)
 - Annual distribution correction: mean annual energy ≅ OK
 - Monthly cycle
 - Needs a monthly based correction
 - Expected evolutions but inter-annual variability must not be neglected

Thanks for your attention

