

Four stationary way	ves parameterizations te	sted:
1. p ₀ '=0 No waves	3. $p_0'=p_0'(z_s, \Delta T_{E/P})$ Orographic forcing	$p_0' = azona$ $\Delta T_{E/P} = equ$ gradient
2. $p_0'=p_0'(T_0')$ 4. $p_0'=p_0'(T_0')+p_0'(z_s,\Delta T_{E/P})$ Thermal forcing Oro. + therm. forcing		
For each parameterization of waves, three experiments with couples ${f \sigma}_0$ ^{LIS} – ${f \sigma}_0$ ^{FIS} have been carried out :		
• $\sigma_0^{\text{LIS}} = 3.25 \qquad \sigma_0^{\text{C}}$	$_0$ ^{FIS} = 0.50 reference c	ase
	₀ ^{FIS} = 0.25 → less ab ger Fennoscandia —	
	ger Laurentide	

Role of planetary waves on Northern hemisphere ice sheets during the last glacial cycle

¹Laboratoire des Sciences de Climat et de l'Environnement ²Laboratoire de Glaciologie et Géophysique de l'Environnement contact : pauline.beghin@lsce.ipsl.fr - CE Saclay, Orme des Merisiers 91191 Gif-sur-Yvette Cedex - France - +33(0)1 69 08 31 97

P. Beghin¹, S. Charbit¹, C. Dumas¹, M. Kageyama¹, D.M. Roche¹, C. Ritz²

- Accumulation and summer surface temperature patterns depend on waves forcing, influencing ablation

=> Planetary waves can favor (or not) ice sheet formation depending on the forcing that we take into account

=> the sensitivity of a change in ablation calculation will not be the same depending on these forcings.

Example : If we decrease FIS ablation consequences are larger with thermal forcing (accumulation and warm summer temperature over Scandinavia) than with orographic forcing (less accumulation).

- Response to insolation variations : five periods of insolation decrease : -126 kyr, -105 kyr, **-85 kyr,** -60 kyr and **-30 kyr**.

-126 kyr until -110 kyr:

Differences at the onset on glaciation can be explained by accumulation and summer temperatures patterns.

-80 kyr until -40 kyr:

waves

less LIS ablation → larger LIS < Iarger FIS with the two forcings (fig.c green) (fig (b), green and blue curves)

2. Importance of the glaciation history

less FIS ablation \longrightarrow smaller FIS (fig.a greys curves)

-30 kyr until -15 kyr: The response is larger when one of the two ice sheets is small (red curves fig.a and c)

- CONCLUSIONS

Planetary waves influence : • the growth of the ice sheets and the dynamics of the cycle through accumulation and summer temperatures patterns -> depending on planetary waves forcing • the way how the growth of a given ice sheet alters the construction of the second one -> In our experiments, the orographic forcing is crucial in this relationship

. the relationship between ice sheet is different depending on planetary