

Daniela Molinari¹, Giuseppe Aronica², Francesco Ballio¹, Nicola Berni³, Claudia Pandolfo³

- ¹ Politecnico di Milano
- ² Università di Messina
- ³ CFD Regione Umbria

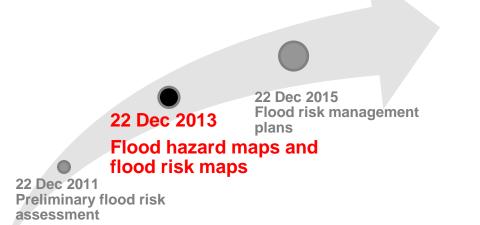
The European "Floods" Directive 2007/60/CE


assessment

FLOOD RISK MANAGEMENT PLANS:

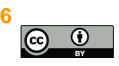
✓ SHALL ADDRESS ALL ASPECTS OF FLOOD RISK MANAGEMENT

✓ MUST BE BASED ON FLOOD HAZARD MAPS AND FLOOD RISK MAPS

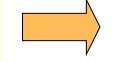

The European "Floods" Directive 2007/60/CE

The European "Floods" Directive 2007/60/CE

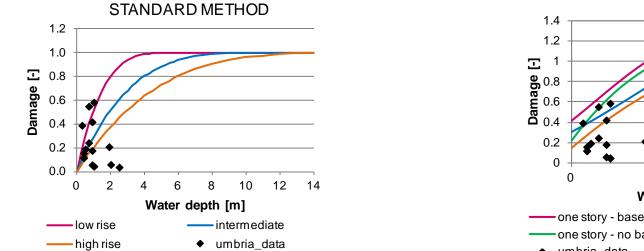
FLOOD RISK MAPS:

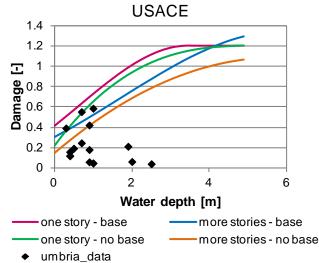

SHALL SHOW ALL THE POTENTIAL ADVERSE CONSEQUENCES ASSOCIATED WITH FLOOD SCENARIOS

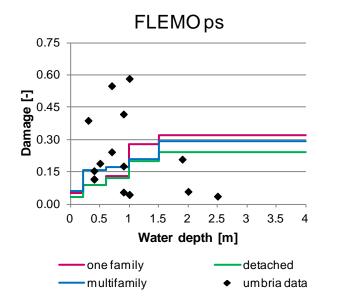


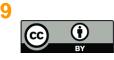


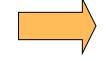
existing curves are site specific, strictly valid for the area where they have been derived


existing curves are site specific, strictly valid for the area where they have been derived




Comparison between existing curves and Italian data


Molinari et al.



Existing curves hardly reproduce observed data

existing curves are site specific, strictly valid for the area where they have been derived

NO CURVES ARE AVAILABLE FOR ITALY

existing curves are site specific, strictly valid for the area where they have been derived

NO CURVES ARE AVAILABLE FOR ITALY

SPECIFIC CURVES MUST BE IDENTIFIED

11 © () _{BY}

AIM: to describe flood damage data collection and validation in order to define depth-damage curves for the Italian context

FOCUS: \rightarrow local scale

 \rightarrow residential sector

OUTLINE:

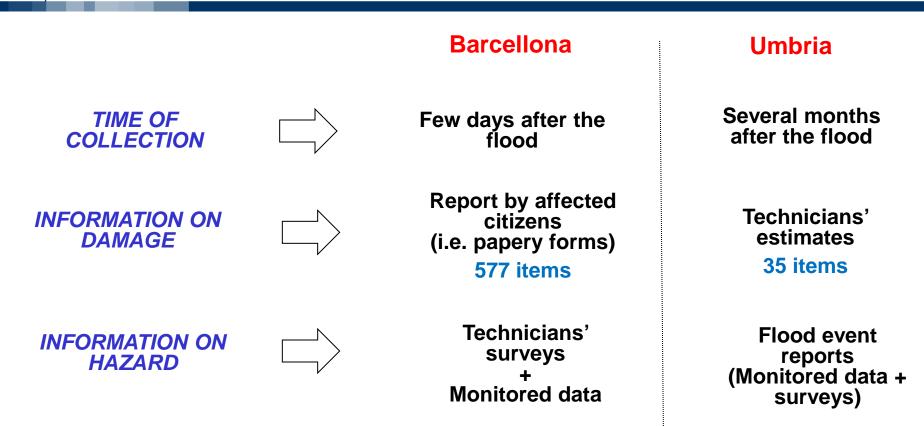
- ✓ Data collection
- ✓ Ex-post evaluation of H,V,E,D
- ✓ Comparison between existing curves and collected data

✓ Critical discussion and suggestions

Barcellona Pozzo di Gotto (Sicily)

Flash flood on 22nd, November, 2011

Tiber alluvial fan (Umbria)


Riverine flood on 25-28, November, 2005

✓ two different types of event (flash floods vs. riverine floods)
✓ two different times for data collection

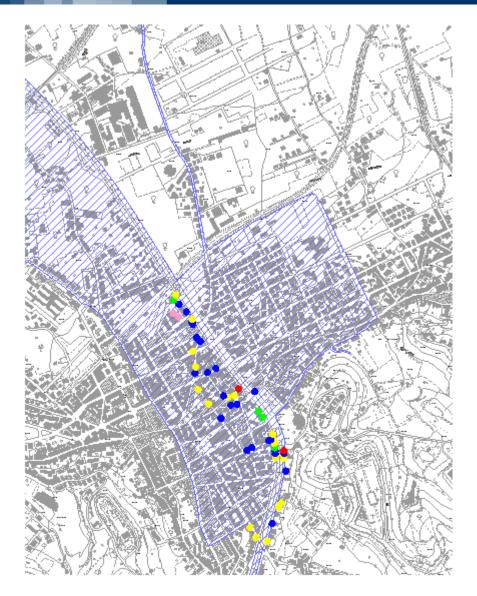
Data collection

Data collection

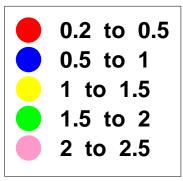
	Barcellona	Umbria
TIME OF COLLECTION	Few days after the flood	Several months after the flood
INFORMATION ON DAMAGE	Report by affected citizens (i.e. papery forms) 577 items	Technicians' estimates 35 items
INFORMATION ON HAZARD	Technicians' surveys + Monitored data	Flood event reports (Monitored data + surveys)

→ Availability of damage data decreases with time
 → Reliability of damage data increases with time

Molinari et al.


Required data	Available data	
(for every affected item)	Barcellona	Umbria
Water depth at building location	 Water depth at building location (<u>52 of 577 affected</u> <u>items</u>) Extent of flooded area 	 Water depth at building location (<u>22 of 35 affected</u> <u>items</u>) Extent of flooded area

→ Hazard data must be collected asap with ad hoc surveys



Case study: Barcellona

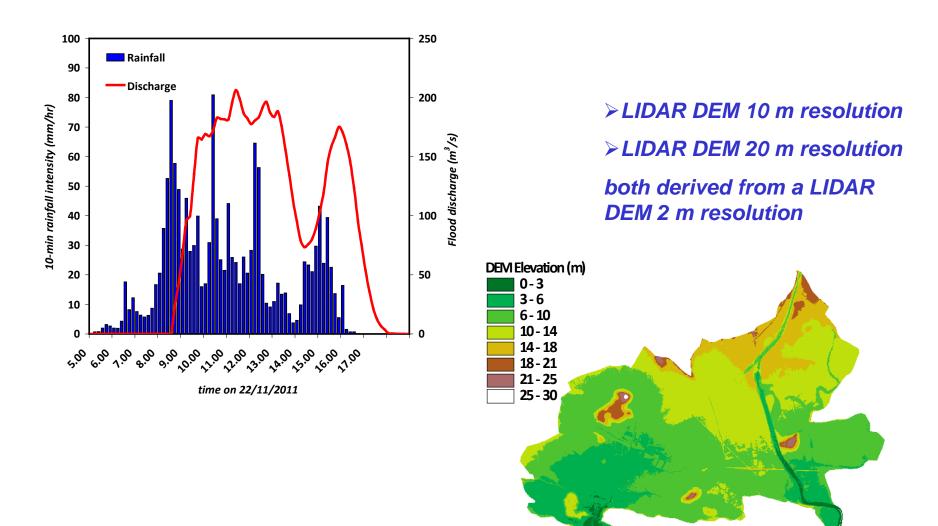
Water depth at building location [m]

POLITECNICO DI MILANO

MLFP-2D (Multi Level Flood Propagation 2-D) :

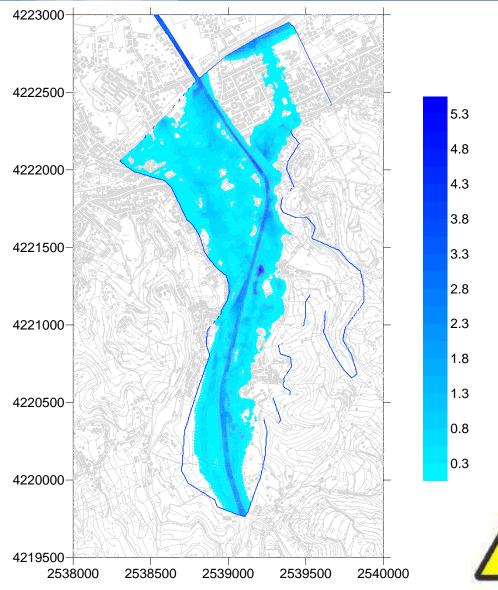
A hyperbolic model based on DSV equations (Aronica et al., 1998) was used. The conservative mass and momentum equations for two-dimensional shallow-water flow, when convective inertial terms are neglected, were be written as follows:

$$\frac{\partial H}{\partial t} + \frac{\partial (uh)}{\partial x} + \frac{\partial (vh)}{\partial y} = 0$$
where:


$$\frac{\partial (uh)}{\partial t} + gh\frac{\partial H}{\partial x} + ghJ_x = 0$$

$$\frac{\partial (vh)}{\partial t} + gh\frac{\partial H}{\partial y} + ghJ_y = 0$$
where:
H is the free surface elevation
u and v are the x and y components of
flow velocity
h is the water depth

These equations were solved by using a finite element technique with triangular elements. The free surface elevation is assumed to be continuous and piece-wise linear inside each element, where the unit discharges in the x and y directions are assumed to be piece-wise constant.



POLITECNICO DI MILANO

→ Hazard data estimation requires accurate inundation dynamics modeling, for each flooded area

Molinari et al.

Exposure, Vulnerability and Damage

	Required data	Available data	
	(for every affected item)	Barcellona	Umbria
Exposure	 Buildings surface Buildings economic value 		Buildings surface (<u>16 of 35 affected items</u>)
Vulnerability	• Explicative vulnerability parameters (context specific)	• Typology of building (<u>all</u> <u>577 affected buildings)</u>	 Presence of basement Number of stories Use of basement Level of maintenance (<u>all 35 affected</u> <u>buildings)</u>
Damage	 Economic value Location 	 Location (i.e. address) Types of damage 	 Economic value Location (i.e. address) Types of damage

Estimation: - COMPARISON WITH CADASTRIAL DATA and MAPS

- ESTIMATION by REAL ESTATE AND PROPERTY PRICE DATABASE

(for economic value)

Exposure, Vulnerability and Damage

	Required data	Available data	
	(for every affected item)	Barcellona	Umbria
Exposure	 Buildings surface Buildings economic value 		Buildings surface (16 of 35 affected items)
Vulnerability	• Explicative vulnerability parameters (context specific)	Typology of building (<u>all</u> <u>577 affected buildings)</u>	 Presence of basement Number of stories Use of basement Level of maintenance (<u>all 35 affected</u> <u>buildings)</u>
Damage	 Economic value Location 	 Location (i.e. address) Types of damage 	 Economic value Location (i.e. address) Types of damage

→Inconsistencies among different sources

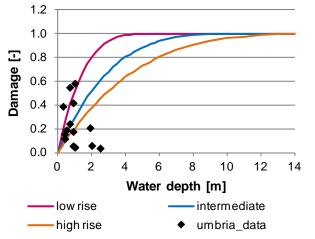
→Lack of univocal classification among different sources

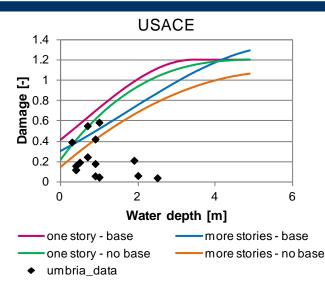
 \rightarrow Partial coverage of data

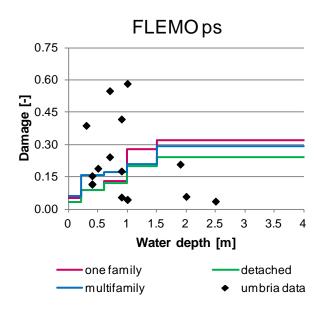
 \rightarrow Inadequate vulnerability data

 \rightarrow Lack of knowledge about damage economic value in the aftermath of events

Results


Available data are inadequate to identify/validate depth-damage curves




Comparison between existing curves and collected data

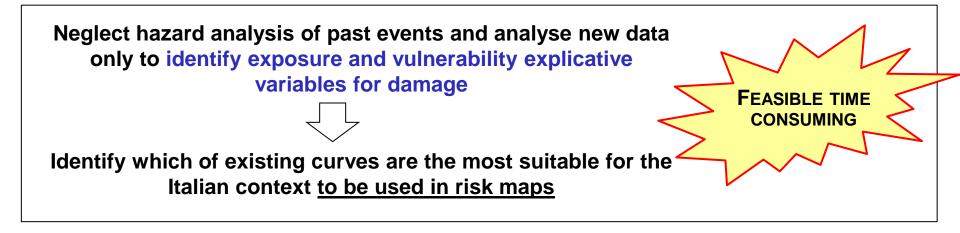
STANDARD METHOD

-Complete data are too scattered to identify a trend

-Complete data (<u>16 in total</u>) are few for the validation of existing curves or the definition of new ones

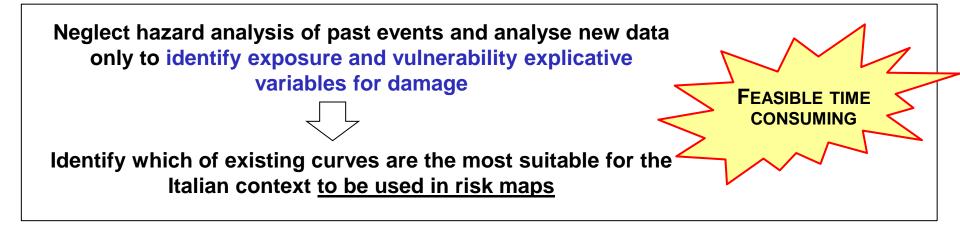
24 © 0 _{BY}

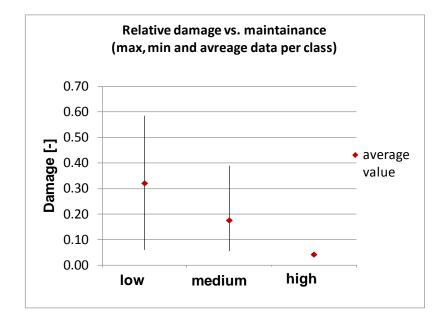
Results


Available data are inadequate to identify/validate depth-damage curves

 \rightarrow PROPOSAL FOR THE NEXT IMPLEMENTATION OF THE FLOODS DIRECTIVE

→ PROPOSAL FOR FUTURE DATA COLLECTION (IN ORDER TO SUPPORT the definition of DEPTH-DAMAGE CURVES)


Proposal for the next implementation of the floods directive


25 © •

Proposal for the next implementation of the floods directive

26 © 0

Source	Hazard factors	Vulnerability factors
Standard method	-Water depth	-Building typology
USACE	-Water depth	-Number of stories
		-Presence of basement
FLEMOps	-Water depth	-Building typology
		-Level of maintenance (i.e. building quality)

Proposal for future data collection to support depth-damage curves definition

Develop a new procedure to collect and storage data in the aftermath of an event which should overcome present limits.

Develop specific depth-damage curves to be used for risk maps update

Proposal for future data collection to support depth-damage curves definition

Develop a new procedure to collect and storage data in the aftermath of an event which should overcome present limits.

Develop specific depth-damage curves to be used for risk maps update

Damage form with compulsory and univocal fields:

-Building location (WGS84)

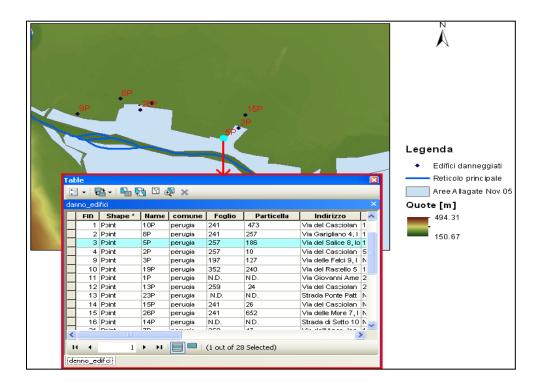
-Hazard data (water depth)

-Buildings vulnerability and exposure (univocal classification)

-Damage (economic value)

N.B. Damage forms include notes for compilation and must be filled in by technicians

SEZIONE 1 - DATI RELATIVI ALL	A SCHEDA	Note alla compilazione
Codice ISTAT Provincia	Scheda nº LLLLI	
Codice ISTAT Comune	Data LULUUI	
Comune [[_[_[_[_[_]]	Squadra []	
SEZIONE 2 - LOCALIZZAZIONE I		•
Coordinate geografiche	LLLLLIN	
(Datum WGS84)	LLLLLIE	
Riferimenti catastali	Foglio LLLI	
	Mappale [[[[]	
	0 via, viale 1 corso	
	2 vicolo 3 piazza, largo	
Indirizzo	4 località [_]	
	Nome	
	Nº civico	
	Nº accessi	
SEZIONE 3 - CARATTERISTICHE	EDIFICIO	
Superficie coperta	LLLI mq	
Nº di piani fuori terra	LU	
Altezza dell'edificio dal piano della strada	LLI m	
Presenza di seminterrato	51 00	
Destinazione d'uso del piano vulnerabile	🗆 garage 🛛 🗆 fondo	Il piano vulnerabile è
	🗆 taverna/cucina 🗆 zona giorno	costituito dal seminterrato,
	presenza di impianti	se presente, oppure dal pian
		terra.


Proposal for future data collection to support depth-damage curves definition

29 © 0

Develop a new procedure to collect and storage data in the aftermath of an event which should overcome present limits.

Develop specific depth-damage curves to be used for risk maps update

Creation of a geo-referenced database to storage collected data

Thanks for your attention!

Daniela Molinari, PhD Politecnico di Milano – Dept. of Environmental, Hydraulic, Infrastructures and Surveying Engineering Piazza Leonardo Da Vinci 32 20133, Milano Tel +39 02 2399 6263 Fax +39 02 2399 6298 daniela.molinari@polimi.it

