A Statistical Approach to Resolve Incompatibilities Between Measured Runoff Data and Daily Estimates of

1. Objectives

In the case of catchments covered by a single raingauge (i.e. a frequent case for medium and large- sized catchments in Greece), one approximates spatially averaged rainfall intensities using point rainfal measurements. Since the statistics of the two processes are quite different, one faces important problems when calibrating hydrological models and calculating annual water-budgets.

We develop an approach to adjust point rainfall measurements to better resemble the statistical structure of spatial rainfall averages. This is done by developing a statistical tool that:

- identifies and corrects incompatibilities between daily rainfall measurements and river discharges,
- accounts for the increase of wet days when passing from poin rainfall measurements, I, to spatial rainfall averages, \bar{I}, (i.e. on average $P[\bar{I}>0 \mid I=0]>0$), and
- allows for water budget corrections at an annual level.

Figure 1: Rainfall measuring locations (daily resolution) at Glafkos river basin for the period $1^{\text {st }}$ October 1975 - $30^{\text {th }}$ September 1993. Daily river discharges are available at the location of the hydroelectric plant (B).
 basin at the location of the hydroelectric plant (B); see Figure 1.
 Spatially Averaged Rainfall

Andreas Langousis and Vasillios Kaleris (andlag@alum.mit.edu) (kaleris@upatras.gr)
Department of Civil Engineering, University of Patras, Greece

Step 2: Use multifractal theory to relate the probability of zero rainfall over a basin of area A, with that of zero rainfall at a point inside the basin; see Langousis and Kaleris (2012, manuscript in preparation).

$$
P_{0, s}(A)=a_{s}(A) P_{0, s}-b_{s}(A)
$$

, ${ }^{\prime}$		(4): parameters that
probability of	probability of	depend on the area of the bas
ro rainfall	zero rainfall at	A and the structure of rainfa
over the basin	a point	(convective vs stratiform) in
		different months s

absence of rain.

3. Statistical framework

Step 1: Formulate a statistical test to identify "wet" days that appear as "dry" in the historical record of point rainfall measurements.
Linear reservoir model
with zero inflow

$$
\Rightarrow \neg(t)=\frac{Q(t)-Q(t-1)}{Q(t-1)}=\text { const. }<0
$$

Figure 4: (a, b) Scatter plots of the empirical ratios $[r(t)>0 \mid I(t)=0]$, calculated using daily rainfall and discharge data for the period 1st Oct. 1975 - 30 th Sep. 1993, and split into 2 equally populated categories with respect to the previous-
\Rightarrow When passing from point rainfall measurements to spatial rainfall averages, use results from Steps 1 and 2 to estimate the number of additional wet days and, also, identify their probable location.
Step 3: For those days, use a lognormal distribution model with rainfall intensities.

$$
\text { rivér discharge on day } t-1
$$ fitted by a gamma (solid lines) and lognormal (dashed lines) distribution models. parameters that depend on the flow conditions to simulate synthetic

Figure 5: (a-b) Plots of logarithmically transformed daily rainfall intensities on wet days, $\log [I(t)>0]$, as a function of the observed change of the river discharge $\log [Q(t)-Q(t-1)>0]$, for 2 (out of 4) equally populated categories (i.e. 164 point each) of the previous-day river discharge $Q(t-1)$. The analysis has been conducted using daily rainfall and discharge data for the same period as in Figure 4. Red dots
correspond to outliers of the log-log linear regression at 5% significance level. (cd) Empirical histograms of the residuals of the $\log -\log \operatorname{linear}$ regression in $(\mathrm{a}-\mathrm{b})$ fitted by a normal distribution model with zero mean.

Step 4: Resolve annual water imbalances (see Figure 2), using a constant multiplicative factor for rainfall, calculated at an inter-annual level.

Figure 8: Seasonal statistics for the measured and adjusted precipitation series.
The adjusted point rainfall series reproduce well the seasonal and annual statistics of spatial rainfall average.

Acknowledgements

The research project is implemented within the framework of the Action «Supporting Posttoctoral Researchers» of the Operational Program "Education
and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State.
In addition, the second author would like to acknowledge the financial support of Helmholtz-Zentrum fuer Umweltforschung GmbH - UFZ [Contract: UFZ02/2009 (RA-3205/09)].

