
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

Reduction of uncertainty of hydrological modeling using different precipitation inputs 

International Water Research Alliance Saxony 

Motivation 
Watershed models suffer from three mayor model uncertainties 
(Abbaspour et al. 2004): 
 Conceptual  
 Input (data, management) 
 Parameterization and calibration 

 

In this study we focus on input uncertainty, especially on precipitation. 
Because of its high spatial and temporal variability, precipitation is a 
major source of uncertainty in hydrological modeling. Uncertainty 
arises from measurement errors, data density and kind of data usage 
in the model (punctual versus areal information). Using an ensemble of 
three models with different precipitation inputs we try to minimize 
uncertainty. 
 

The work is embedded in the project IWAS. One sub-project deals with 
water quality of the river Western Bug in Ukraine (Fig. 1). Water is 
highly polluted chemically and biologically. As one part of the system 
analysis, the water balance of the catchment Kamianka-Buzka (Fig. 2, 
2560 km²) has to be assessed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data and Methods 
We used the hydrological model SWAT (http://swatmodel.tamu.edu/). 
The main parameterization features are: 
 

  Soil and hydraulic parameters were derived from a soil map in the 
scale of 1:200.000, measurements and expert knowledge.  
 Land-use information was derived from images of the satellites 
Landsat-TM5 and SPOT-1 of the year 1989. 
 Three meteorological stations in and nearby the basin had 
sufficient precipitation data (Fig. 2).  

 
 
 
 
 
 
 
 
 
 
 

The spatial representativeness of the existing precipitation stations is 
often low.  We tested three approaches to assimilate precipitation data 
in the model: 
 

Stations: By default, SWAT incorporates meteorological observations 
using station data that are nearest to the centroid of each sub 
catchment.  
 

Regionalized: Data of 20 surrounding stations were regionalized 
applying kriging methods onto a 3 x 3 km grid.  

 

CCLM: The regional climate model CCLM (resolution 7 km) was set up 
for the target area (Pavlik et al., 2011). Resulting daily time series were 
bias corrected.  

 
Grid cells within each of the 20 sub-basins (Fig. 2) were arithmetically 
averaged to obtain 20 fictive precipitation stations. Radar data were not 
available for the region, satellite data were disregarded. 
 

Differences between the three precipitation inputs are shown for the 
whole catchment (Tab. 1) and exemplarily for three sub basins (Fig. 3):  

 

 Yearly and daily means vary little (max. 8%). 
 CCLM produces too much days with rain (higher median). 
 Regionalized and CCLM data are more balanced than Station 
data on the catchment scale (more days with rain but less strong 
precipitation events).  

 

Tab.1: Comparison of three precipitation inputs for the whole 
catchment (1981-1990) 
 
 
 
 
 
 
 

Before applying alternative precipitation inputs, SWAT was pre-
calibrated step by step in a combination of manual and automatic 
calibration using the meteorological data Stations. 
 

Finally, three models with different precipitation inputs were set up and 
calibrated independently (1981-1990) using the auto-calibration 
procedure Sequential Uncertainty Fitting (SUFI2) which is integrated in 
the SWAT interface SWAT-CUP (Abbaspour et al., 2004). Models were 
validated for the period 1971-1980. 
 

An alternative to deterministic predictions of single models are 
probabilistic predictions on the basis of model ensembles.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Box plots of daily data (1981-90) for the three precipitation  inputs for 
three sub basins. Shown are 25 and 75% percentile, median (line), arithmetic 
mean (square) and 1.5* interquartile range (whiskers). Outliers are not shown 
for the sake of clarity. 
 

We applied four ensemble averaging methods: 
 

 Arith.mean: Arithmetic mean of simulated monthly runoff. 
 R²-weight: Weighted mean regarding the coefficient of 
determination.  
 NSE-weight: Weighted mean regarding the Nash-Sutcliffe model 
efficiency coefficient. 
 BMA: Bayesian model averaging (Raftery et al., 2005): The weight 
of each considered model corresponds to the degree of agreement 
between the PDFs of each modeled and the observed runoff. 
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Results 
Table 2:  
 The models Regionalized and CCLM did not perform better than 
the default method Stations in both periods.  
 The performance is better in the validation than in the calibration 
period. This implies that not all processes in the catchment are fully 
understood and modeled appropriately . 
 Ensemble averaging improved the performance generally in the 
calibration period.  BMA outperformed the others.  
 There were no clear superiority of a model or an averaging 
method in validation period. 

Figure 4:   
 Differences between three model hydrographs vary much, 
whereby larger deviations occur with CCLM input, because of 
strongly different monthly precipitation (e.g. in June 1983). 
 Not all observed runoff situations could be simulated (e.g. 
summer 1985). 

 

 
 There is still high overall uncertainty of modeling (95PPU: 2.5th and 
97.5th percentile of modeled uncertainty of calibration parameters) 

 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

Conclusions 
 Uncertainty that results from input data could be reduced. 

 

 The alternative inputs CCLM and Regionalized did not perform 
better than Stations. 

 

 Bayesian Model Averaging was superior to the other averaging 
methods in the calibration period.  

 

 In the validation period no clear advantage of using ensemble 
averaging was recognizable.  

 

 Uncertainty in precipitation data couldn't be reduced completely, 
which is due to low station density and low representativeness of 
stations. But also, uncertainty that results from model concept, model 
parameters, boundary conditions, and very probable also from the 
observed runoff is still high. 

 

 A possible approach to deal with uncertainty of precipitation could 
be to calibrate the precipitation data as well. Fig. 4: Observed and modeled hydrographs of three models, their enveloping 

curve, BMA and  the uncertainty band of the model Stations (95PPU) for the 
calibration period. 

Precipitation 
input 

P 
(mm/a) 

Days/year with  
P  > 0 mm/d    P > 10 mm/d 

Mean bias to 
Stations (mm/a) 

Stations 665 178 17 - 

Regionalized 651 188 14 -1.2 

CCLM 676 246 14 +0.9 

Fig. 1: Location of 
the investigation 
area (encircled). 
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Kamianka-Buzka 

 Model 
Calibration period 

    R²         NSE         Diff  *1 
Validation period 

     R²           NSE       Diff  *1 
Stations 0.66 0.57 2.01 0.79 0.69 3.86 
Regionalized 0.57 0.53 -1.44 0.71 0.65 -0.20 
CCLM 0.55 0.54 -0.69 0.39 0.38 1.31 
Ensemble averaging method  
Arithm. mean 0.67 0.67 -0.04 0.73 0.66 1.65 
R²-weight 0.67 0.67 0.08 0.76 0.69 1.81 
NSE-weight 0.67 0.67 0.05 0.75 0.69 1.76 
BMA 0.69 0.68 0.00 0.75 0.69 1.63 
*1  difference between mean observed and mean simulated/averaged runoff 
[m³/s]  

Fig. 2: Sub 
basins and three 
precipitation 
stations. 

Tab. 2: Performance of the three models and the ensemble averaging 
methods. Best performing model or method is marked in red. 
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