Abstract. Minimum and maximum daily temperature data (1952-2008) registered in Umbria Region (Tiber Basin, Central Italy) have been analyzed to estimate mean trends and possible increases in the extreme events (heat and cold waves). Possible trends have been sought by means of the sequential Mann-Kendall test

Study area and dataset
Study area: Umbria Region (Tiber, Basin, Central Italy) (Fig 1).

Reference period: 1952-2008 78 stations analyzed, most of them with a high number of missing data (Fig. 2)
Only stations with at least 45 years of data (75%), even not consecutive, have been retained for trend analysis (5 stations). Missing data were calculated as the average of the available daily region.

Trend analysis - Sequential Mann-Kendal results

6. Behavior of slope and detection aloorthm for $T_{\text {max }}$

Considering the whole period, our findings show a positive trend of T show a positive trend of $T_{\max }$ and $T_{\text {min }}$ enhanced in 3 stations out of 5 (although Significant break points have been pointed out approximately at the end of 1980's.

State of the art

At Italian scale it is widely recognized scale that a general increase of temperature is occurring (Brunetti et al. 2006, Toreti and Desiato 2010). Also at European scale, many studies claimed that temperatures have increased in the last century, with a trend more evident in the last 30-40 years. Some studies at national and continental scale have been specifically devoled thogotogies. A significant increase in heat

Methodology

 Methodology

 Methodology}Heat wave is defined as the period of at least 5 consecutive days in summer that exceed the long-term ${ }^{\text {th }}$ percentile of daily T_{m}

Cold wave is defined as the period of at least 5 consecutive days in winter that does not exceed the long-term $10^{\text {th }}$ percentile of daily $T_{\text {min }}$

he Mann-Kendall test has been applied to the sequential annual time series progressively increased by 1 year to verify the existence of trend. Trends have been also investigated by means of a change point detection algorithm based on the singular-spectrum analysis (Moskvina and Zhighjavsky, 2003). This method is based on the singularvalue decomposition of the lag-covariance matrix computed on the trajectory matrix

The signal in terms of trend is very different from station to station; differences are more evident for $T_{\text {max }}$ then for $T_{\text {min }}$
The coherence between $T_{\text {max }}$ and $T_{\min }$ varies in relation to the considered station ($T_{\text {min }}$ and $\tau_{\text {max }}$ present similar trends for 3 stations out of 5)
${ }^{\circ}$
$\underbrace{0}_{0}$
\qquad
:

Fig 7 . Behavior of slope and detection algorithm for $T_{m i t}$

Discussion and conclusions

The climatic signal detected over the Umbria Region in terms of the mean annual daily temperature ($T_{\max }$ and $T_{\min }$) appears to be inhomogeneous; differences among the stations are more evident for $T_{\text {max }}$ then for $T_{\text {min }}$. Trends are not constant along the whole period, neither for $T_{\text {min }}$ nor for $T_{\text {max }}$ indeed, the adopted algorithm individuates significant break points.
A positive trend can be detected for both $T_{\max }$ and $T_{\min }$ along the whole period for 3 stations out of 5 ; it spans in the range $0.21 \div 0.41{ }^{\circ} \mathrm{C} /$ decade, which is comparable to previous literature findings both at the Italian (Brunetti et al. 2006; Toreti and Desiato 2010) and regional scales (Bartolini et al. 2008; Ceccarelli et al. 2008; Vergni and Todisco 2011).

- Accordingly, extreme events analysis has revealed a significant increase of the number and duration of heat waves and of mean and extreme temperatures for cold waves, moving from the first (1952-1980) to the second half (1981-2008) of the considered period. Anthropic factors could influence very much the variations of temperatures
years and preventing from using such data, like they are, as climatic indicators.

Heat and cold waves analysis
Occurrence and maximum duration of heat waves increase with time, while decrease for cold waves (Fig 8 and 9, respectively).
The mean and extreme intensities of heat waves remain almost constant, while a significant increase of temperatures can be detected for cold waves (Tab 1 and 2 respectively)
The climatic behavior in terms of heat and cold waves is substantially homogenous over the region.
There is not a full correspondence between the events selected on the base of $T_{\text {min }}$ and $T_{\text {max }}$ (compare Tab 3 and 1 and Tab 4 and 2).

