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2. Mathematical modeling (CFD model) 
 

Computational fluid dynamics have been an efficient tool for decades in Oxyfuel 

combustion researches [6] to provide predictions of temperature, heat transfer, and 

product species in furnace. However, an insight into mathematical models for 

Oxyfuel combustion is restricted due to many unknown parameters such as 

devolatilization, volatile reaction mechanisms, turbulent gaseous combustion, char 

reactions, radiation properties of gases and heat transfer. Heat transfer drastically 

changes due to an increasing proportion of H2O and CO2 in these Oxyfuel 

conditions because both gases have higher thermal heat capacity than N2 in air-

firing and are a good emitter and absorber of radiation [4].  
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3. Laboratory-scale oxyfuel simulation (100 kWth) 
 

The numerical models of lignite combustion under oxy-fuel conditions are first 

investigated in a 100 kWth laboratory scaled oxyfuel furnace applying correlations for 

weighted sum of gray gases (WSGG) model for the predictions of radiation properties of 

oxy-fuel gas mixture [7]. The mentioned mathematical models are investigated using 

numerical CFD software (ANSYS FLUENT 12.0) to provide predictions of aerodynamics, 

thermo-chemical and heat transfer quantities.  

Gray gas 3 and4 gray gases 

Figure 1. 100,000 computational cells for 

a 100 kWth oxy-fuel furnace (1/6 model). 

Figure  4. Temperature contour (C). 
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Figure 3. Axial velocity and temperature at 

0.05 m distant from burner. 
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4. Pilot-scale oxyfuel simulation (0.4 MWth) 
 

The developed numerical models from 100 kWth laboratory-scale oxyfuel furnace are 

further used for the predictions of temperature, hemi-spherical incident intensity and 

species concentrations (O2, CO2, H2O) for a 0.4 MWth oxy-fuel furnace at BTU Cottbus. 

Figure 7. Oxyfuel boiler 

(Drawing). 

Figure 11. Burner’s mesh. 

Figure 8. Boiler’s mesh  

(1 Million cells). 

Figure 9. Velocity (m/s). 

Figure 13. Temperature (C). Figure 14. O2 concentration 

(% Vol.). 

Figure 12. Temperature plot (C). Figure 6. Burner (Drawing). 

1. Introduction 
 

From the policies scenario from Internal Energy Agency in 2010, global energy 

demand for coal climbs from 26% in 2006 to 29% in 2030 and most of demands for 

coal comes from the power-generation sector [1]. According to the new 

Copenhagen protocol [2], Global CO2 emission is rising from power generation due 

to an increasing world demand of electricity. For Energy-related CO2 emission in 

2009, 43% of CO2 emissions from fuel combustion were produced from coal [3]. 

Therefore, CO2 capture from coal is the key factor to reduce greenhouse gas 

emission.  

 

Oxyfuel combustion [4] is one of the promising technologies for capturing CO2 from 

power plants and subsequent CO2 transportation and storage in a depleted oil or 

gas field or saline-aquifer. The concept of Oxyfuel combustion is to remove N2 from 

the combustion process and burn the fuel with a mixture composed of O2 and CO2 

together with recycled flue gas back into combustion chamber in order to produce a 

flue gas consisting mainly of CO2, easily purified, compressed and transported to 

storage sites. At present, Oxyfuel plants are still in the phase of pilot-scaled 

projects [5] and combustion in Oxyfuel conditions must be further investigated for a 

scale-up plant. 
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Figure 2. Oxyfuel furnace (Drawing). 

Figure 10. Swirling velocity vector (m/s). Figure 5. Oxyfuel boiler 
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