

Development and relationship of monogenetic and polygenetic volcanic fields in time and space.

Aurelie Germa, Chuck Connor, Laura Connor, and Rocco Malservisi

University of South Florida, Department of Geology, Tampa, United States (germa_aurelie82@yahoo.fr)

The classification of volcanic systems, developed by G. P. L. Walker and colleagues, relates volcano morphology to magma transport and eruption processes. In general, distributed monogenetic volcanic fields are characterized by infrequent eruptions, low average output rate, and a low spatial intensity of the eruptive vents. In contrast, central-vent-dominated systems, such as stratovolcanoes, central volcanoes and lava shields are characterized by frequent eruptions, higher average flux rates, and higher spatial intensity of eruptive vents. However, it has been observed that a stratovolcano is often associated to parasitic monogenetic vents on its flanks, related to the central silicic systems, and surrounded by an apron of monogenetic edifices that are part of the volcanic field but independent from the principal central system. It appears from spatial distribution and time-volume relationships that surface area of monogenetic fields reflects the lateral extent of the magma source region and the lack of magma focusing mechanisms. In contrast, magma is focused through a unique conduit system for polygenetic volcanoes, provided by a thermally and mechanically favorable pathway toward the surface that is maintained by frequent and favorable stress conditions. We plan to relate surface observations of spatio-temporal location of eruptive vents and evolution of the field area through time to processes that control magma focusing during ascent and storage in the crust. We choose to study fields that range from dispersed to central-vent dominated, through transitional fields (central felsic system with peripheral field of monogenetic vents independent from the rhyolitic system). We investigate different well-studied volcanic fields in the Western US and Western Europe in order to assess influence of the geodynamic setting and tectonic stress on the spatial distribution of magmatism. In summary, incremental spatial intensity maps should reveal how fast a central conduit is created during the development of a volcanic field, and how this could influence the outbreak of dispersed monogenetic volcanoes that are not geochemically linked to the central system.