

A sensitivity analysis on seismic tomography data with respect to CO₂ saturation of a CO₂ geological sequestration field

Chанho Park (1), Phung K.T. Nguyen (1), Myung Jin Nam (1), and Jongwook Kim (2)

(1) Department of Energy and Mineral Resources Engineering, Sejong University, Seoul, Korea (nmj1203@gmail.com), (2) Korea Electric Power Corporation, Seoul, Korea

Monitoring CO₂ migration and storage in geological formations is important not only for the stability of geological sequestration of CO₂ but also for efficient management of CO₂ injection. Especially, geophysical methods can make in situ observation of CO₂ to assess the potential leakage of CO₂ and to improve reservoir description as well to monitor development of geologic discontinuity (i.e. fault, crack, joint, etc.). Geophysical monitoring can be based on wireline logging or surface surveys for well-scale monitoring (high resolution and narrow area of investigation) or basin-scale monitoring (low resolution and wide area of investigation). In the meantime, cross-well tomography can make reservoir-scale monitoring to bridge the resolution gap between well logs and surface measurements. This study focuses on reservoir-scale monitoring based on crosswell seismic tomography aiming to describe details of reservoir structure and monitoring migration of reservoir fluid (water and CO₂). For the monitoring, we first make a sensitivity analysis on crosswell seismic tomography data with respect to CO₂ saturation. For the sensitivity analysis, Rock Physics Models (RPMs) are constructed by calculating the values of density and P and S-wave velocities of a virtual CO₂ injection reservoir. Since the seismic velocity of the reservoir accordingly changes as CO₂ saturation changes when the CO₂ saturation is less than about 20%, while when the CO₂ saturation is larger than 20%, the seismic velocity is insensitive to the change, sensitivity analysis is mainly made when CO₂ saturation is less than 20%. For precise simulation of seismic tomography responses for constructed RPMs, we developed a time-domain 2D elastic modeling based on finite difference method with a staggered grid employing a boundary condition of a convolutional perfectly matched layer. We further make comparison between sensitivities of seismic tomography and surface measurements for RPMs to analysis resolution difference between them. Moreover, assuming a similar reservoir situation to the CO₂ storage site in Nagaoka, Japan, we generate time-lapse tomographic data sets for the corresponding CO₂ injection process, and make a preliminary interpretation of the data sets.