

Mineralogical controls on organic N, accumulation, transformation, and bioavailability along a 120,000-year soil chronosequence

Sandra Meyer-Stüve (1), Stephanie Turner (2), Guggenberger Georg (1), Dohrmann Reiner (2), Axel Schippers (2), and Robert Mikutta (1)

(1) Institut für Bodenkunde, Leibniz Universität Hannover, Hannover, Germany, (2) Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany

Nitrogen mineralized from soil organic matter (OM) is a major driver in ecosystem productivity and sustainability. Despite this, the role of mineral-organic associations in nitrogen cycling is poorly understood. Here, we study the time-dependent accumulation and transformation of organic nitrogen (ON) in mineral-bound OM as a function of soil mineralogy along the temperate 120,000-year-old Franz Josef chronosequence (New Zealand). Seven sites along the chronosequence were examined for organic carbon (OC) and ON contents, with mineral-bound OC and ON being quantified by density fractionation using sodium polytungstate ($\rho = 1.6 \text{ g cm}^{-3}$). Heavy soil fractions were characterized by powder X-ray diffraction for assessment of the mineralogical composition as well as by X-ray photoelectron spectroscopy and hydrolyzable amino acids to account for mineral-induced shifts in the chemical composition of mineral-bound OM. The apparent ^{14}C age of mineral-associated OM was revealed by accelerator mass spectrometry. The bioavailability of mineral-bound OC and ON was tested in 90-day incubations under aerobic and anaerobic conditions, and was related to soil mineralogy and enzymatic activities (protease, urease, aminopeptidase). Initial results show that the mineral-associated OM in the A horizons was young ($\Delta^{14}\text{C}$ values: 57 to 75 ‰), while more negative $\Delta^{14}\text{C}$ values (7 to -889 ‰ in deeper E, B, and C horizons point to a large fraction of stabilized OM. The ON in mineral-organic associations accounted for the majority of total N ($94 \pm 6\%$; $n = 32$), corresponding to ON stocks ranging between 0.3 and 1.0 kg m $^{-2}$ (1 m depth). Enzyme activities strongly decreased with soil depth, while cell-normalized activities were higher in subsoil, likely reflecting a higher efficiency of subsoil microbial communities in accessing mineral-bound ON. The incubation results in relation to soil mineralogy and ON composition, thus, allow elucidating the controlling parameters on the acquisition of mineral-bound ON in soils representing various development stages.