

Comparison of bomb-pulse U-236 and C-14 as oceanic tracer

Stephan Winkler (1), Peter Steier (1), and Jessica Carilli (2)

(1) Faculty of Physics, University of Vienna, 1090 Wien, Austria (stephan.winkler@univie.ac.at), (2) Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia

Since uranium is known to behave conservatively in ocean waters, U-236 has great potential in application as tracer of ocean currents. U-236 ($t_{1/2}=23.4\text{Ma}$) was introduced into the oceans by atmospheric nuclear weapon testing with amounts estimates ranging from 700kg to 1500kg. With its half-life longer than its already significant residence time in the ocean ($\sim 0.5\text{Ma}$) it is essentially a stable isotope tracer for this purpose.

However, even the elevated ratios of global stratospheric fall-out are beyond the capabilities of ICPMS and TIMS methods. Using the exceptional sensitivity and ultra-low background for U-236 of the Vienna Environmental Research Accelerator's Accelerator Mass Spectrometry system, we have measured, and recently published the first year-by-year record of the bomb-pulse of U-236 in the marine environment.[1]

In contrast to C-14, which has much wider application as ocean tracer, uranium does not have the added complication of atmosphere-ocean exchange when input into the ocean is considered. A comparison of the evolution of the bomb-pulse C-14 with bomb-pulse U-236 in the ocean could provide additional input for modeling.

Here we present a comparison of our year-by-year record of U-236/U-238 with the yearly resolved C-14 in the same core covering years 1944 to 2006. We discuss the results in the context of existing marine C-14 of the region and the marine reservoir effect.