



## Combined N<sub>2</sub>O mitigation and CO<sub>2</sub> trapping: A step toward a carbon negative agriculture?

Pål Tore Mørkved (1,3), Nina Simon (1), Peter Dörsch (2), and Lars Reier Bakken (2)

(1) Institute for Energy Technology, Kjeller, Norway, (2) Norwegian University of Life Sciences, Ås, Norway, (3) Centre for Geobiology, University of Bergen, Bergen, Norway

Plant production emits considerable amounts of Nitrous Oxide (N<sub>2</sub>O), and a reduction of these emissions is difficult to achieve. Lab and field experiments have shown, however, that the ratio of denitrification products (N<sub>2</sub>O/N<sub>2</sub>) increase with decreasing soil pH, most likely because low pH inhibits the assembly of the enzyme N<sub>2</sub>O reductase which transforms N<sub>2</sub>O to N<sub>2</sub>. Liming increases soil pH, which will lower the N<sub>2</sub>O/N<sub>2</sub> product ratio of denitrification, hence reducing the emission of N<sub>2</sub>O. The effect of this reduction on climate forcing may be offset, however, by the CO<sub>2</sub> released from the lime itself, as well as the burst of soil organic carbon and N<sub>2</sub>O emissions induced by the rapid perturbation of soil pH by the lime.

We conducted a set of laboratory experiments that explore the effect of alternative minerals or rocks on soil pH and N<sub>2</sub>O and CO<sub>2</sub> emission. The materials used are olivine (forsterite) and anorthosite, which consumes H<sup>+</sup> at dissolution and, on the long term, the dissolved Mg and Ca form carbonates with CO<sub>2</sub>. The laboratory experiments focus on the effect of these minerals and their grain size distribution on soil pH and N<sub>2</sub>O emissions.

Incubation experiments show that olivine amendments cause moderate increase in soil pH and substantial decrease in net N<sub>2</sub>O production in long-term aerobic incubations. The denitrification product ratio (N<sub>2</sub>O/(N<sub>2</sub>+N<sub>2</sub>O)) after anarobisation also decreased substantially. Dolomite amendment caused an immediate pulse of CO<sub>2</sub>-emission (carbonate CO<sub>2</sub> and more long lasting increase in microbial respiration (oxygen uptake and CO<sub>2</sub> production). In contrast, forsterite or anorthosite amendment caused only marginal increase in respiration (and no emission of carbonate CO<sub>2</sub> for obvious reasons). Although the anorthosite had a weaker effect on soil pH than forsterite it affected N<sub>2</sub>O emission in some proportion to the change in pH.