

River and Lake Level Observation from Radar Altimetry

Philippa Berry (1), Richard Smith (1), Mark Salloway (1), Bruno Manuel Lucas (2), Salvatore Dinardo (3), and Jérôme Benveniste (4)

(1) EARPS Laboratory, De Montfort University, Leicester, UK, (2) Deimos/ESA/Esrin, (3) Serco/ESA/Esrin, (4) ESA

Satellite altimetry has been used for many years to measure the height of inland water bodies; this paper assesses the contribution of the EnviSat RA-2 to global inland water monitoring. A full waveform analysis of cycles 10 to 85 of the EnviSat RA-2 SGDR dataset has been completed over inland water, retrieving over 822,000 crossings. The results confirm that the unique dynamic mode-switching capability of the RA-2 has enabled the instrument to maintain lock over rapidly varying terrain, thus acquiring a huge database of echoes over inland water. The vast majority of these targets were acquired in 320MHz 'ocean' mode, enabling precise retracking and allowing generation of 25636 time-series of inland water heights. Analysis reveals that of these, 15067 have successfully retrieved the target signature.

A mature pilot demo has been running since 2005, generating river and lake height time series disseminated to the end users within 3 days of satellite overpass; this paper includes an analysis of the user base. The data currently available in the River & Lake system are derived from conventional EnviSat and Jason-2 altimeter waveforms. The new generation of SAR type altimeters (on CryoSat and Sentinel-3) will require new processing techniques to produce accurate heights. To this end an analysis is made of 1800Hz EnviSat individual echoes, to determine what results can be obtained with a much higher pulse repetition frequency. This analysis reveals that even small pools of water can be identified, and height time-series successfully retrieved from as few as 7 IEs.