

Improved decadal predictability due to memory in vegetation? A study with the EC-Earth model

Martina Weiß (1), Paul Miller (2), Simona Stefanescu (3), Bert Wouters (1), Bart van den Hurk (1), Reindert Haarsma (1), and Wilco Hazeleger (1)

(1) KNMI, De Bilt, Netherlands (weiss@knmi.nl), (2) Lund University, Lund, Sweden, (3) ECMWF, Reading, UK

In this analysis we revisit the EC-Earth-based study on decadal predictability of ocean and atmosphere conditions, where a set of decadal hindcast experiments for the period 1960-2005 was carried out.

Especially the subpolar North-Atlantic region due to its low-frequency variations in the model showed model skill in predicting observed variations in sea surface temperature up to 6 to 9 years ahead, and good skill in both hindcasting observed trends, as well as capturing inter-annual variability in the region. Predictability over land, however, was marginal.

Here, this set of experiments is repeated with a new version of the EC-Earth model, which is now supplemented by a dynamic vegetation model in order to identify impacts of land surface, i.e. vegetation initialization, as well as impacts of vegetation memory as possible predictability sources.