

"Beam-Bulk" streamer modeling for the production of TGFs.

Olivier Chanrion (1), Zdeněk Bonaventura (2,3), Fabien Tholin (2), François Pechereau (2), Deniz Çinar (1), Anne Bourdon (2), and Torsten Neubert (1)

(1) Technical University of Denmark, National Space Institute (DTU Space), Kgs. Lyngby, Denmark.
(chanrion@space.dtu.dk), (2) EM2C Laboratory, École Centrale Paris, UPR 288 CNRS, Grande voie des vignes, 92295 Châtenay-Malabry Cedex, France., (3) Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.

The generation of X- and Gamma-rays in electric discharges has been studied intensively since the discovery of Terrestrial Gamma-ray Flashes (TGFs) by the Compton Gamma-ray Observatory in 1994. Emissions are bremsstrahlung from energetic electrons accelerated in a discharge electric field. Whereas observations now are many, from thunderstorm, lightning and in the laboratory, the phases of the discharge where emissions are generated are still debated and several processes for electron acceleration have been put forward by theorists. In this paper we present preliminary results from a “beam-bulk” model to experiment with the acceleration of low energy electrons in the enhanced electric field of streamers. The hybrid model contains a Monte Carlo part that simulates electrons of high energy while the fluid part simulates the low energy electrons and ions. The preliminary results show the emissions of high energy electrons from a self-consistent simulation of streamer discharge and their impact on the streamer propagation.