

Ground-based FTIR measurements of NH₃ total columns and comparison with IASI data

Corinne Vigouroux (1), Martine De Mazière (1), Filip Desmet (1), Christian Hermans (1), Bavo Langerock (1), Francis Scolas (1), Martin Van Damme (2), Lieven Clarisse (2), and Pierre-François Coheur (2)

(1) Belgian Institute for Space Aeronomy, Brussels, Belgium (corinne.vigouroux@aeronomie.be), (2) Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles (ULB), Brussels, Belgium

Atmospheric ammonia (NH₃) dominates global emissions of total reactive nitrogen. It has an impact on human health, as a precursor of fine particulate matter, and on Earth's ecosystems, via deposition. The main source of global NH₃ emissions is agriculture, the remaining ones being the oceans, natural vegetation, humans, wild animals and biomass burning. The global atmospheric budget of NH₃ is still very uncertain in chemical models, highlighting the critical need for satellite and ground-based observations.

We present, for the first time, time-series (2009 - 2011) of NH₃ total columns obtained from ground-based FTIR measurements. These observations are performed at Reunion Island (21°S, 55°E), one of the two subtropical stations, in Southern Hemisphere, of the ground-based Network for the Detection of Atmospheric Composition Change (NDACC) equipped with FTIR instruments. The seasonal and inter-annual variabilities of ammonia observed at Reunion Island from the ground are compared to the ones derived from recent IASI data obtained with a new retrieval method based on the calculation of a Hyperspectral Range Index.