

Towards a mechanistic interpretation of $\delta^{13}\text{C}$: modelling calcification in benthic foraminifera and its application to palaeoceanographic model scenarios

Tilman Hesse (1,*), Gerrit Lohmann (1), Martin Butzin (1), Richard Zeebe (2), and Dieter Wolf-Gladrow (1)

(1) Alfred Wegener Institute, Bremerhaven, Germany, (2) Department of Oceanography, University of Hawaii at Manoa, Honolulu, USA, (*) tilman.hesse@awi.de

The proxy $\delta^{13}\text{C}$ as derived from benthic foraminifera shells is widely used by palaeoceanographers to reconstruct past water masses. A mechanistic description of the biogeochemical processes involved in forming the benthic foraminiferal $\delta^{13}\text{C}$ signal, however, is still lacking.

We are using a reaction-diffusion model for calcification in benthic foraminifera, coupled to a combined global ocean and a carbon cycle circulation model, in order to describe the formation of foraminiferal shell $\delta^{13}\text{C}$ more mechanistically. The coupled models are then applied to a present-day control run and different glacial ocean circulation scenarios.

Our results suggest that the effect of temperature on $\delta^{13}\text{C}$ in benthic foraminiferal shells is more pronounced than previously thought: high (low) temperatures result in higher (lower) shell $\delta^{13}\text{C}$ values when compared to the $\delta^{13}\text{C}$ value of dissolved inorganic carbon (DIC) in the same location. Additionally, we find that the modelled respiration rate modulates benthic shell $\delta^{13}\text{C}$ values: higher (lower) respiration rates cause a marked depletion (enrichment) of shell $\delta^{13}\text{C}$. Crucially, for the standard respiration rate all scenarios result in shell $\delta^{13}\text{C}$ values that are lower by $\geq 0.2\text{\textperthousand}$ compared to the corresponding $\delta^{13}\text{C}$ of the surrounding DIC.

Importantly, the changes in modelled $\delta^{13}\text{C}$ induced by changes in temperature and respiration rate are in the same order of magnitude as the differences in $\delta^{13}\text{C}$ between the present-day/Late Holocene and the LGM. Given these uncertainties, the distribution of LGM water masses based on reconstructions of $\delta^{13}\text{C}$ is less well constrained than previously thought: both a shoaled Atlantic meridional overturning circulation as well as one that is close to the present-day circulation can be reconciled within the uncertainties.