

A $\delta^{13}\text{C}$ record of paleoatmospheric CH_4 from 75-95 kyr before present

Peter Sperlich (1,2), Christo Buizert (1,3), Theo M. Jenk (1,4), Célia J. Sapart (5), Markella Prokopiou (5), Thomas Röckmann (5), and Thomas Blunier (1)

(1) University of Copenhagen, Niels Bohr Institute, Centre for Ice and Climate, Copenhagen, Denmark (sperlich@nbi.ku.dk), (2) Max-Planck-Institute for Biogeochemistry, Jena, Germany, (3) Oregon State University, Corvallis, USA, (4) Paul Scherrer Institute, Villigen, Switzerland, (5) Institute for Marine and Atmospheric Research in Utrecht, University of Utrecht, The Netherlands

We analyzed the carbon isotopic composition of CH_4 in ice core samples and present a record that covers the time between 75 and 95 kyr before present, which is marked by strong variations in temperature and CH_4 mixing ratio. We observe a strong variability in $\delta^{13}\text{C-CH}_4$ of 3.5 ‰ throughout the study period. Between 75 and 85 kyr before present, the $\delta^{13}\text{C-CH}_4$ varies while also the CH_4 mixing ratio shows a strong change over Dansgaard-Oeschger event (DO) 21. In contrast, the CH_4 mixing ratio varies little during DO 22 and is rather stable between 90 and 95 kyr before present while the $\delta^{13}\text{C-CH}_4$ exhibits a strong variability of 3.5 ‰. The variability of $\delta^{13}\text{C-CH}_4$ is therefore not necessarily controlled by changes in the CH_4 mixing ratio. It has been observed that the $\delta^{13}\text{C-CH}_4$ is largely correlated with the CO_2 mixing ratio and the global ice volume/relative sea level change (Hubertus Fischer, pers. comm. 2012). We will discuss possible reasons for the link between these parameters which suggest that fully coupled climate models are needed to accurately disaggregate the sink and source partitioning.