

Simulation of idealized warm fronts and life cycles of cirrus clouds

Vera Bense and Peter Spichtinger

Johannes Gutenberg University, Institute for Atmospheric Physics, Mainz, Germany (spichtin@uni-mainz.de)

One of the generally accepted formation mechanisms of cirrus clouds is connected to warm fronts. As the warm air glides over the cold air mass, it cools through adiabatic expansion and reaches ice supersaturation that eventually leads to the formation of ice clouds.

Within this work, the EULAG model (see e.g. Prusa et al., 2008) was used to study the formation and life cycles of cirrus clouds in idealized 2-dimensional simulations. The microphysical processes were modelled with the double-moment bulk scheme of Spichtinger and Gierens (2009), which describes homogeneous and heterogeneous nucleation.

In order to represent the gradual gliding of the air along the front, a ramp was chosen as topography. The sensibility of cloud formation to different environmental conditions such as wind shear, aerosol distribution and slope of the front was analyzed. In case of cirrus cloud formation its persistence after the front was studied as well as the change in microphysical properties such as ice crystal number concentrations.

References:

Prusa, J.M., P.K. Smolarkiewicz, A.A. Wyszogrodzki, 2008: EULAG, a computational model for multi-scale flows. *Computers and Fluids*, doi:10.1016/j.compfluid.2007.12.001.

Spichtinger, P., K. M. Gierens, 2009: Modelling of cirrus clouds - Part 1a: Model description and validation, *Atmos. Chem. Phys.*, 9, 685-706.