

Inhibition of pyrite oxidation by surface coating agents: Batch and field studies

Jaeyoung Choi, Eun Do Gee, Hyun-Shik Yun, Woo Ram Lee, and Young-Tae Park
KIST, Gangneung Institute, Korea, Republic Of (jchoi@kist.re.kr)

The potential of several surface coating agents to inhibit the oxidation of metal sulfide minerals from Young-Dong coal mine and the Il-Gwang gold mine was examined by conducting laboratory scale batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH₂PO₄, MgO and KMnO₄ as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H₂O₂ or NaClO). For the observed time period (8 days), Young-Dong coal mine samples exhibited the least sulfate (SO₄²⁻) production in the presence of KMnO₄ (16%) or cement (4%) while, for Il-Gwang mine samples, the least SO₄²⁻ production was observed in presence of KH₂PO₄ (8%) or cement (2%) compared to control. Field-scale pilot tests at the Il-Gwang site also showed that addition of KH₂PO₄ decreased SO₄²⁻ production from 200 to 13 mg L⁻¹ and it also reduced Cu and Mn from 8 and 3 mg L⁻¹, respectively to <0.05 mg L⁻¹ (below ICP-OES detection limits). The experimental results suggested that the use of surface coating agents is a promising alternative for sulfide oxidation inhibition at acid mine drainage sites.