

Mars Ion Outflow and Escape – Solar Cycle Dependence

Rickard Lundin, Stas Barabash, Hans Nilsson, Masatoshi Yamauchi, and Edic Dubinin
Swedish Institute of Space Physics, Umeå, Sweden (rickard.lundin@irf.se, 0046 907869203)

With 9 years of data from the ASPERA-3 experiment on Mars Express (MEX) it is now feasible to analyze the solar cycle impact on the ion outflow and escape from Mars – from the end of solar cycle 23, through solar minimum 2008, up to the solar maximum of cycle 24. The study is based on average fluxes of low-energy (<300 eV) O⁺ and O₂⁺, derived for selected periods when MEX traversed the central tail near the noon-midnight meridian. A time series plot of average O⁺ and O₂⁺ fluxes, and solar activity proxies (RI and F10.7) display how the heavy ion outflow from Mars vary with solar activity. We note that the average O⁺, O₂⁺ flux increased by a factor of ≈ 10 from 2008 (solar minimum) to 2013, while RI rose from ≈ 3 to 60, and a normalized F10.7* (F10.7-60) rose from ≈ 6 – 60, F10.7* suggesting a close correlation with heavy ion outflow.

A correlation analysis between the two solar activity proxies (RI and F10.7*) and the O⁺ and O₂⁺ average flux gives correlation coefficients (R²) greater than 0.6, i.e. there is a strong positive correlation between the energization and outflow of ionospheric heavy ions and solar activity.

A preliminary estimate of the total escape rate of heavy ions (O⁺⁺O₂⁺) from Mars is $\approx 1.2 \cdot 10^{24}$ ions/s (2008, solar minimum) and $1.2 \cdot 10^{25}$ ions/s (2013, solar maximum?)