

Investigation of the photo stationary state of NO_x during the PARADE field experiment using a novel Gas Analyzer for Nitrogen Dioxide Applying Laser-induced Fluorescence

Umar Javed (1), Dagmar Kubistin (1,1*), Monica Martinez (1), Markus Rudolf (1), Andreas Reiffs (1), Uwe Parchatka (1), Anke Nölscher (1), Wie Song (1), Jim Thieser (1), Birger Bohn (2), Denis Pöhler (3), Florian Berkes (4), Rolf Sander (1), John Crowley (1), Jonathan Williams (1), Peter Hoor (4), Horst Fischer (1), Jos Lelieveld (1), and Hartwig Harder (1)

(1) Max Planck Institute for Chemistry, Mainz, Germany (umar.javed@mpic.de), (1*) now at: University of Wollongong, School of Chemistry, Wollongong, NSW, Australia, (2) Forschungszentrum Jülich, IEK-8: Troposphäre, 52425 Jülich, Germany, (3) Institut of Environmental Physics, University of Heidelberg, Germany, (4) Institute for Atmospheric Physics, University of Mainz, Germany

Here we present an investigation of the photostationary state (PSS) between NO and NO_2 using measurements of NO_2 performed during PARADE with a new Gas Analyzer for Nitrogen Dioxide Applying Laser-induced Fluorescence (GANDALF). The focus of PARADE, a collaboration between different German research institutes, is to investigate the summertime emissions and photochemistry in a semi-remote environment. Field measurements took place in summer 2011 at the Taunus Observatory, located on the Kleiner Feldberg in southwestern Germany. The measurement site is surrounded by forest with biogenic emissions in summer and influenced by anthropogenic sources from nearby large cities and highways. A comprehensive set of measurements of several important trace species and meteorological parameters were carried out during PARADE, including three different in-situ measurement techniques for NO_2 , namely LIF, TD-CRD and a blue light converter/CLD. Being the first deployment of GANDALF this opportunity provided the means for a detailed comparison. Further we present the characteristics of the PSS observed in different chemical regimes observed for different wind directions during the campaign and compare the results with chemical box model simulations constrained by measurements.