

Climatic implications of the dust measurements from a horizontal ice core sequence in ablation area of Taylor glacier (Antarctica)

Benjamin Grente (1), Jean Robert Petit (1), Daniel Baggensos (2), Jeffrey Severinghaus (2), Joseph McConnell (3), Michael Sigl (3), Olivia Maselli (3), Thomas Bauska (4), and Edward Brook (4)

(1) LGGE, CNRS Université Grenoble1, St Martin d'Hères, France (petit@lgge.obs.ujf-grenoble.fr), (2) Scripps Institution of Oceanography, La Jolla, CA, USA, (3) Desert Research Institute, Reno, NV, USA, (4) Oregon State University, Corvallis, OR, USA

We present a new dust record from a horizontal ice core taken in the ablation zone of Taylor Glacier. The glacier is fed by ice deposited on the northern slope of Taylor Dome and flows in a dry valley region (Antarctica) where the ice surface mostly disappears by sublimation.

A series of ice samples have been collected from 202 shallow cores performed every 30cm along an 80m long transect outside from an apparent ice folding. The 7 cm long section was analyzed for the dust size and concentration by using a Coulter counter multisizer IIe, after decontamination of the outer part of the ice by the washing method.

The size distribution of the dust samples displays a systematic a mode around 2 microns and the absence of particle larger than 5-7 microns, a property which is similar to dust records from inland sites. This indicates the dust has a long distance transport origin excluding the surrounding dry valleys and denuded mountains area as potential sources.

As an implication, we use the dust data to tie our record to the EPICA Dome C timescale. The series is undisturbed (no folding) and encompasses the full deglaciation from \sim 38 ka to \sim 15 ka. Comparison with other climate proxies (stable isotope, chemistry, gases ...) shows that the Taylor Dome region went through a similar deglacial climatic transition as the rest of Antarctica.