

Experiments on exact NLS solutions in the focusing and defocusing regime

Amin Chabchoub (1), Norbert Hoffmann (1), Olivier Kimmoun (2), Hubert Branger (3), Davide Proment (4),
Miguel Onorato (4), Goery Genty (5), John M. Dudley (6), and Nail Akhmediev (7)

(1) Hamburg University of Technology, Mechanics and Ocean Engineering, 21073 Hamburg, Germany
(amin.chabchoub@tuhh.de), (2) École Centrale Marseille, 13013 Marseille, France, (3) IRPHE, UMR 7342, CNRS, AMU
Aix Marseille Université, 13013 Marseille, France, (4) Dipartimento di Fisica, Università degli Studi di Torino, Torino 10125,
Italy, (5) Tampere University of Technology, Optics Laboratory, 33101 Tampere, Finland, (6) Institut FEMTO-ST, UMR 6174
CNRS - Université de Franche-Comté, 25030 Besançon, France, (7) Optical Sciences Group, Research School of Physics and
Engineering, Institute of Advanced Studies, The Australian National University, Canberra ACT 0200, Australia

The nonlinear Schrödinger equation (NLS) is a weakly nonlinear evolution equation describing the dynamics of wave packets in nonlinear dispersive media. Recent laboratory experiments on in time and space localized breathers on finite background confirmed the ability of the focusing NLS to describe extreme localization in deep-water. The focusing NLS admits another family of pulsating solutions referred to as breathers on zero background, also known as multi-soliton solutions. Results on laboratory studies on such waves are reported. A discussion on physical properties related to the evolution dynamics of these solutions, is presented. In addition, first observations of dark soliton solutions of the NLS in the defocusing regime are shown and analyzed.