

Summer extreme climatic event in the future: impact on the net CO₂ and water fluxes of an upland grassland and buffering impact of elevated atmospheric CO₂

Jacques Roy (1), Olivier Ravel (1), Damien Landais (1), Clément Piel (1), Marc Defossez (1), Christophe Escape (1), Sébastien Devidal (1), Philippe Didier (1), Michael Bahn (2), Florence Volaire (3), Angela Augusti (4), Jean-François Soussana (4), and Catherine Picon-Cochard (4)

(1) European Ecotron of Montpellier CNRS France, (2) Institute of Ecology University of Innsbruck Austria, (3) CEFE CNRS, INRA Montpellier France, (4) UREP INRA Clermont-Ferrand France

Extreme climatic events are expected to be more frequent and intense in a few decades, but they will also occur in a climatic context different from the current one. In the Montpellier Ecotron, we studied the response of intact grassland monoliths (1m², 60 cm deep) sampled in an upland grassland of the French Massif Central. The first year the grasslands were acclimated to the average climatic conditions of the years around 2050 (+ 4 °C and – 56 mm for summer precipitations). The second year, the same climate was maintained but in half of the experimental units we imposed a summer drought and heat wave (50 % reduction of precipitations for a month and then 100 % precipitation reduction combined with a 3,4 °C increase in temperature for two weeks). A CO₂ treatment (520 vs 380 μmol/mol) was crossed with the climatic treatment.

Net CO₂ fluxes were measured continuously during the second year of the experiment. The extreme climatic event induced a total senescence of the canopy whatever the CO₂ treatment. The interactive effect of elevated CO₂ with the drought treatment was significant at the onset of the drought and particularly large in the fall after the recovery period, with a net photosynthesis twice as high in the (extreme climate+ CO₂) treatment compared to the control. Integrated over the year, elevated CO₂ totally buffered the impact of the extreme climatic event on net CO₂ exchanges. These results are discussed together with the evapotranspiration and soil humidity data.