

Defining and Resolving Current Systems in Geospace

Michael Liemohn (1), Natalia Ganushkina (1,2), Olga Amariutei (2), Yannis Daglis (3), Iannis Dandouras (4), Darren De Zeeuw (1), Stepan Dubyagin (2), Yusuke Ebihara (5), Raluca Ilie (6), Roxanne Katus (1), Marina Kubyshkina (7), Steve Milan (8), Shin Ohtani (9), Nikolai Ostgaard (10), Jone Reistad (10), Frank Toffoletto (11), and Sorin Zaharia (6)

(1) Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI, United States (liemohn@umich.edu, 734 647 3083), (2) Finnish Meteorological Institute, Helsinki, Finland, (3) Institute for Astronomy, Astrophysics, Space Applications, and Remote Sensing, National Observatory of Athens, Athens, Greece, (4) Astrophysics and Planetary Science Research Institute, Toulouse, Cedex, France, (5) Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, Japan, (6) ISR-1 Division, Los Alamos National Laboratory, Los Alamos, New Mexico, (7) Institute of Physics, University of St. Petersburg, St. Petersburg, Russia, (8) Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom, (9) Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States, (10) Department of Physics and Technology, University of Bergen, Bergen, Norway, (11) Physics and Astronomy Department, Rice University, Houston, Texas, United States

Electric currents flowing through geospace support a highly nondipolar magnetic field topology, and their time-varying dynamics change particle drift paths and create a nonlinear feedback on the currents themselves. A number of current systems exist in the magnetosphere, most commonly the dayside magnetopause Chapman-Ferraro currents, high latitude “region 1” field-aligned Birkeland currents, lower-latitude “region 2” field-aligned currents connected to the partial ring current, magnetotail currents, and the symmetric ring current. In the near-Earth nightside, however, several of these current systems flow in close proximity to each other and it is very difficult to identify a local measurement as belonging to a specific system. Such identification is important, however, because how the current closes and how these loops change in space and time governs the magnetic topology of the magnetosphere and therefore controls the physical processes of geospace. Furthermore, many methods exist for identifying the regions of near-Earth space carrying each type of current. This study presents a robust collection of these definitions of current systems in geospace, particularly in the near-Earth nightside magnetosphere, as viewed from a variety of observational and computational analysis techniques. The influence of definitional choice on the resulting interpretation of physical processes governing geospace dynamics is presented and discussed.