

The dynamical climate network, its major centroids, and their close relation to the ENSO cycle

Avi Gozolchiani (1), Kazuko Yamasaki (2), Yehiel Berezin (1), Oded Guez (1), Henk Dijkstra (3), and Shlomo Havlin (1)

(1) Bar Ilan, Physics, Ramat Gan, Israel (avigoz@gmail.com), (2) Tokyo University of Information Sciences, Chiba 265-8501, Japan, (3) Utrecht University, Physics and Astronomy, The Netherlands

The observed relations between temperature fluctuations in different geographical regions yields a very robust climate network pattern that remains highly stable during time. Here, we break up the different elements that contribute to this stability, and quantify them [Y. Berezin, et. al., Nat. Sci. Rep. (2012)]. Due to its high stability, the climate network adjacency matrix can be regarded as a spatial field on its own right, and its typical profiles indeed have been the topic of recent studies. We have demonstrated [K. Yamasaki et. al. PRL (2008), A. Gozolchiani et. al. EPL (2008)] that during El-Nino times large portions of this field have a reduced value, corresponding to a less correlated atmosphere. We are now able to pinpoint a peculiar and rich pattern in this effect - the unique autonomous component in the eastern pacific [A. Gozolchiani et. al. PRL 107, 148501 (2011)]. In contrast to our and others earlier works, the different stages of the ENSO cycle come out as the 2 dominant K-means centroids, without pre-identification based on ENSO indices. Finally, the different feedback mechanisms which contribute to events are shown to be reflected in the network profile.