

Natural abundance and ^{13}C -enriched characterisation of atmospheric methane uptake in a forest soil

Peter Maxfield (1), Edward Hornibrook (2), and Richard Evershed (3)

(1) Department of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK (pete.maxfield@uwe.ac.uk), (2) University of Bristol, School of Earth Sciences, Bristol, United Kingdom (ed.hornibrook@bristol.ac.uk), (3) University of Bristol, Organic Geochemistry Unit, School of Chemistry, Bristol, United Kingdom (r.p.evershed@bristol.ac.uk)

Whilst much attention is focused on CH_4 emission inventories, CH_4 sinks are sometimes overlooked and not accurately accounted for in national budgets. Two primary reasons for this disjunction include uncertainties about the magnitude and mechanism of terrestrial CH_4 oxidation, and an under-appreciation of the quantity of CH_4 that is removed from the atmosphere by microorganisms. These uncertainties in part are caused by a lack of high-resolution field data that quantify microbial soil CH_4 sink. To fully characterize the soil CH_4 sink, isotopic fractionation of CH_4 during uptake and the fate of CH_4 carbon following oxidation by soil microorganisms should be quantified in addition to CH_4 fluxes.

Here we report on field tests studying CH_4 uptake in soil using a Picarro G2201-*i* cavity ringdown spectrometer (CRDS). Short term atmospheric CH_4 uptake was continuously measured in a forest soil in Leigh Woods, UK where the soil methanotrophic community and soil CH_4 uptake kinetic isotopic effect (KIE) had been previously quantified using stable isotope probing and conventional stable isotope analysis techniques (Maxfield *et al.*, 2008). Two methodological approaches were tested: (i) direct measurement of the soil CH_4 uptake KIE at subambient CH_4 concentrations, and (ii) methanotrophic carbon conversion efficiency (CCE) where CCE was evaluated through monitoring the direct conversion of ^{13}C -labelled CH_4 to ^{13}C -labelled CO_2 . The suitability of the G2201-*i* analyzer as a continuous isotopic CH_4 and CO_2 analyzer for use at both subambient CH_4 concentrations and high ^{13}C -enrichments will be discussed.

Maxfield, P.J., Evershed, R.P. and Hornibrook, E.R.C. (2008) Physical and biological controls on the in situ kinetic isotope effect associated with oxidation of atmospheric CH_4 in mineral soils. *Environmental Science & Technology*, 42, 7824-7830.