

DOC export from a peat extraction site in transition to managed restoration - preliminary results of a long-term research project

Norman Rüggen, Lars Kutzbach, Susanne Kopelke, and Eva-Maria Pfeiffer

Institute of Soil Science, University of Hamburg, Hamburg, Germany (norman.rueggen@uni-hamburg.de)

Peatlands play a major role in the global cycles of water and carbon. Budgeting carbon fluxes of temperate man-managed peatlands is limited by few available data. The main carbon compounds exported from such sites are CO_2 , CH_4 and laterally exported C compounds (dissolved organic carbon (DOC) and gases). Without reliable estimates of laterally exported carbon from managed peatlands, overall carbon balances of such geoecosystems remain obscure.

The Himmelmoor peatland in Schleswig-Holstein is subject to horticultural peat extraction in transition towards managed restoration. One-third of 130 ha of peatland area are already subject to managed restoration, the remaining part is still intensively used as a peat extraction site. Surface water discharge rates are measured by a water head sensor in combination with a rectangular-shaped weir. An October-November data set (54 days period, 2012) shows a distinct base-flow and precipitation-dependent discharge peaks, which were up to five times higher than the base-flow. The observations indicate a poor water storing capacity of the intensively used areas. During this first observation period, almost 65,000 tons of peatland-DOC-bearing water have been discharged into the adjacent river system. DOC concentrations in the discharge water have been measured every 6-12 days with a Total Carbon Analyzer TOC-L (Shimadzu, Japan). Additionally, a field spectrophotometer (spectro::lyser,s-can, Austria) has been employed, for measuring quasi-continuous concentrations of DOC. During the 54 day period, approximately 1.75 g DOC m⁻² (or about 1750 kg DOC km⁻²) has been laterally exported from the peatland. Average DOC concentration was 35.1 ± 4 g l⁻¹. These values range in the same order of magnitude that have been published from managed UK peatlands (Armstrong et al., 2010; Wilson et al., 2011). Preliminary data evaluation of the in-situ field spectrophotometer show that DOC concentrations of discharge water varied up to 1.5 mg L⁻¹ in less than six hours and up to about 3 mg L⁻¹ in 36 hours.

The described recently established hydrological measurements are planned to be continued for the next ten years in combination with continuous eddy covariance measurements of land-atmosphere fluxes of Water, CO_2 and CH_4 . This long-term monitoring of lateral and vertical exchange fluxes will serve as a basis for evaluating the success of the peatland restoration with respect to biogeochemical cycling and greenhouse gas budgets.

Literature

Armstrong, A., Holden, J., Kay, P., Francis, B., Foulger, M., Gledhill, S., McDonald, A., Walker, A., 2010. The impact of peatland drain-blocking on dissolved organic carbon loss and discolouration of water; results from a national survey. Journal of Hydrology 381, 112–120.

Wilson, L., Wilson, J., Holden, J., Johnstone, I., Armstrong, A., Morris, M., 2011. Ditch blocking, water chemistry and organic carbon flux: Evidence that blanket bog restoration reduces erosion and fluvial carbon loss. Science of the Total Environment 409, 2010–2018.