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Computational aspects increasingly shape environmental sciences [1]. Actually, transdisciplinary modelling of
complex and uncertain environmental systems is challenging computational science (CS) and also the science-
policy interface [2—7]. Large spatial-scale problems falling within this category — i.e. wide-scale transdisciplinary
modelling for environment (WSTMe) [8—10] — often deal with factors (a) for which deep-uncertainty [2,11-13]
may prevent usual statistical analysis of modelled quantities and need different ways for providing policy-making
with science-based support. Here, practical recommendations are proposed for tempering a peculiar — not infre-
quently underestimated — source of uncertainty. Software errors in complex WSTMe may subtly affect the out-
comes with possible consequences even on collective environmental decision-making. Semantic transparency in
CS [2,8,10,14,15] and free software [16,17] are discussed as possible mitigations (b) .

Transdisciplinary integration (e.g. systems of systems)

Environmental system(s) heterogeneity (e.g. geospatial fragmentation)
Data heterogeneity (formats, definitions, spatiotemporal density, ...)
Software complexity (algorithms, dependencies, languages, interfaces, ...)

Complexity =

Incomplete scientific knowledge

(e.g. climate scenarios [18-20], tipping points [21-24], ...)
Uncertainty = ¢ Modelling assumptions and simplifications [25-27]
Uncertainty of measured/derived data
Software uncertainty

(a)

Uncertainty propagation via:
Propagation in the network of interconnected WSTMe components [2,15,28-34]
= Iterations within nonlinear optimization steps [5,35-41]
Data fusion, harmonization, integration [9,42—45]
Steps for computing and aggregating criteria and indices [6,7,11,12,46-49]

Dynamic
behaviour

Software uncertainty, black-boxes and free software. Integrated natural resources modelling and management
(INRMM) [29] frequently exploits chains of nontrivial data-transformation models (D-TM), each of them affected
by uncertainties and errors. Those D-TM chains may be packaged as monolithic specialized models, maybe only
accessible as black-box executables (if accessible at all) [5S0]. For end-users, black-boxes merely transform inputs
in the final outputs, relying on classical peer-reviewed publications for describing the internal mechanism. While
software tautologically plays a vital role in CS, it is often neglected in favour of more theoretical aspects. This
paradox has been provocatively described as “the invisibility of software in published science. Almost all published
papers required some coding, but almost none mention software, let alone include or link to source code” [51].

Recently, this primacy of theory over reality [52—54] has been challenged by new emerging hybrid approaches [55]
and by the growing debate on open science and scientific knowledge freedom [2,56-59]. In particular, the role of
free software has been underlined within the paradigm of reproducible research [50,58-60]. In the spectrum of
reproducibility, the free availability of the source code is emphasized [58] as the first step from non-reproducible
research (only based on classic peer-reviewed publications) toward reproducibility. Applying this paradigm to
WSTMe, an alternative strategy to black-boxes would suggest exposing not only final outputs but also key in-
termediate layers of data and information along with the corresponding free software D-TM modules. A concise,
semantically-enhanced modularization [14,15] may help not only to see the code (as a very basic prerequisite for
semantic transparency) but also to understand — and correct — it [61]. Semantically-enhanced, concise modulariza-



tion is e.g. supported by semantic array programming (SemAP) [14,15] and its extension to geospatial problems
[8,10]. Some WSTMe may surely be classified in the subset of software systems which “are growing well past the
ability of a small group of people to completely understand the content”, while “data from these systems are often
used for critical decision making” [52]. In this context, the further uncertainty arising from the unpredicted “(not
to say unpredictable)” [53] behaviour of software errors propagation in WSTMe should be explicitly considered as
software uncertainty [62,63].

Y = f(X)=f(0",X) Theoretic D-TM whose algorithm is typically described in peer reviewed
publications. The D-TM may e.g. implement a given WSTMe as instance
of a suitable family of functions f by means of selected parameters 6*.
0* may be the result of an optimization (regression, control problem, ...).

Y = f9(X) = f(65, X ,) Real D-TM where the software uncertainty ¢ may affect both the
function family f and the optimality of the selected parameters §°.
::’ f(6, X, )

sem

Semantically enhanced D-TM (e.g. SemAP). The D-TM is subject to the

semantic checks sem as pre-, post-conditions and invariants on inputs,
outputs and the D-TM itself:

Y =f(6,X,()

Y = | f(0, X, :?em &
176, %01 {Dsem(Y,f,e,X,o

(b)

X is the input array of data X = {X, X5, - X;--- X, }

X; € CNaxxNin; i 3 multi-dimensional array (e.g. a two-dimensional raster layer)
Y is analogously the output array of data

the modal/deontic logic operator [ ]p means: it ought to be that p.

where

The data and information flow of a black-box D-TM is often a (hidden) composition of D-TM modules:

Y « ::’ f(@,X,)

This chain of free-software D-TM modules (each of them semantically-enhanced) should be transparent:

::‘fk(9k7Xk,) ’k - ::‘fj(aj,Xj,) ‘]

Y <=| . fm(em,Xm,) m\ ::’ fl(el,Xl,) ‘1 =X
::’f2(02,X2,) ‘2

Semantics and design diversity. Silent faults [64] are a critical class of software errors altering computation
output without evident symptoms — such as computation premature interruption (exceptions, error messages, ...),
obviously unrealistic results or computation patterns (e.g. noticeably shorter/longer or endless computations). As
it has been underlined, “many scientific results are corrupted, perhaps fatally so, by undiscovered mistakes in
the software used to calculate and present those results” [65]. Despite the ubiquity of software errors [62—70],
the structural role of scientific software uncertainty seems dramatically underestimated [2,53]. Semantic D-TM
modularization might help to catch at least a subset of silent faults, when misusing intermediate data outside the
expected semantic context of a given D-TM module (b).

< X

‘ sem

Where the complexity and scale of WSTMe may lead unavoidable software-uncertainty to induce or worsen deep-
uncertainty [2], techniques such as ensemble modelling may be recommendable [11-13]. Adapting those tech-
niques for glancing at the software-uncertainty of a given WSTMe would imply availability of multiple instances
(implementations) of the same abstract WSTMe. Independently re-implementing the same WSTMe (design di-
versity [71]) might of course be extremely expensive. However, partly independent re-implementations of critical
D-TM modules may be more affordable and examples of comparison between supposedly equivalent D-TM algo-
rithms seem to corroborate the interest of this research option [59,72,51].
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