

Data analysis of rogue waves in the presence of wind and damping

Constance Schober

University of Central Florida, Mathematics, Orlando, United States (drschober@gmail.com)

Recently we proposed two dynamical selection criteria for rogue waves in nonlinear Schrödinger (NLS) models: stability under perturbation of initial data and persistence under perturbation of the NLS model.

In this paper we investigate the effects of wind and damping on the development of rogue waves using a new higher order nonlinear Schrödinger model with nonlinear damping and linear forcing.

We interpret the damped, wind driven rogue waves in light of the stability and persistence analysis and use the inverse spectral theory of the NLS equation to investigate their statistical properties and their likelihood. The likelihood of rogue waves is examined in relation to the changes in both the nonlinear and the Fourier spectrum.