

Comparing the composition of the earliest basalts erupted by the Iceland and Afar mantle plumes.

Finlay M Stuart

Isotope Geosciences Unit, SUERC, East Kilbride, United Kingdom (f.stuart@suerc.gla.ac.uk)

The first basalts erupted by mantle plumes are typically generated by mantle melting at temperatures 200–300°C higher than average ambient mantle. This is consistent with the derivation of from a thermal boundary layer at the core-mantle boundary. Mantle plume temperatures decrease with time, likely as large plume heads give way to thin plume conduits. Consequently the early, hot plume basalts are a window into the deep mantle. At it's simplest they provide a test of whether the discrete plume source regions are primordial mantle that have been isolated since soon after Earth accretion, or have substantial contributions from subducted slabs.

Here I present new isotopic and trace element determinations of the earliest picritic basalts from the ~30 Ma Afar plume in Ethiopia. They will be compared with similar material from the ~60 Ma proto-Iceland plume (PIP) in an effort to test prevailing models regarding the source of mantle plumes. The extremely primordial nature of the helium in the PIP picrites ($^{3}\text{He}/^{4}\text{He} \sim 50$ Ra) contrasts with much lower values of the Ethiopian flood basalt province (~21 Ra). The Iceland plume $^{3}\text{He}/^{4}\text{He}$ has decreased (linearly) with time, mirroring the secular cooling of the Iceland mantle plume identified by decreasing MgO and FeO in primary melts. In 60 million years the Iceland plume $^{3}\text{He}/^{4}\text{He}$ is still higher than the maximum Afar plume value. The Sr-Nd-Pb isotopic composition of the high $^{3}\text{He}/^{4}\text{He}$ Ethiopian flood basalt province picrites are remarkably homogenous (e.g. $^{87}\text{Sr}/^{86}\text{Sr} = 0.70396$ – 0.70412 ; $^{206}\text{Pb}/^{204}\text{Pb} = 18.82$ – 19.01). In comparison the PIP picrites have ranges that span nearly the global range of E-MORB and N-MORB. The Afar and proto-Iceland mantle plumes are clearly not initiated in a single deep mantle domain with the same depletion/enrichment and degassing histories, and the same scale of heterogeneity. This implies that there is more than one plume source region/mechanism that is capable of generating comparable volumes of basalt melt at Earth surface.